Among mammals, it’s safe to say that the selection pressure per generation is on the rough order of 1 bit. Yes, many mammals give birth to more than 4 children, but neither does selection perfectly eliminate all but the most fit organisms. The speed limit on evolution is an upper bound, not an average.
One bit per generation equates to a selection pressure which kills half of each generation before they reproduce according to the first part of your post. Then you say 1 bit per generation is the most mammalian reproduction can sustain. But, more than half of mammals (in many, perhaps most, species) die without reproducing. Wouldn’t this result in a higher rate of selection and, therefore, more functional DNA?
Among mammals, it’s safe to say that the selection pressure per generation is on the rough order of 1 bit. Yes, many mammals give birth to more than 4 children, but neither does selection perfectly eliminate all but the most fit organisms. The speed limit on evolution is an upper bound, not an average.
One bit per generation equates to a selection pressure which kills half of each generation before they reproduce according to the first part of your post. Then you say 1 bit per generation is the most mammalian reproduction can sustain. But, more than half of mammals (in many, perhaps most, species) die without reproducing. Wouldn’t this result in a higher rate of selection and, therefore, more functional DNA?