All three of these are hard, and all three fail catastrophically.
If you could make a human-imitator, the approach people usually talk about is extending this to an emulation of a human under time dilation. Then you take your best alignment researcher(s), simulate them in a box thinking about AI alignment for a long time, and launch a superintelligence with whatever parameters they recommend. (Aka: Paul Boxing)
All three of these are hard, and all three fail catastrophically.
I would be very surprised if all three of these are equally hard, and I suspect that (1) is the easiest and by a long shot.
Making a human imitator AI, once you already have weakly superhuman AI is a matter of cutting down capabilities and I suspect that it can be achieved by distillation, i.e. using the weakly superhuman AI that we will soon have to make a controlled synthetic dataset for pretraining and finetuning and then a much larger and more thorough RLHF dataset.
Finally you’d need to make sure the model didn’t have too many parameters.
All three of these are hard, and all three fail catastrophically.
If you could make a human-imitator, the approach people usually talk about is extending this to an emulation of a human under time dilation. Then you take your best alignment researcher(s), simulate them in a box thinking about AI alignment for a long time, and launch a superintelligence with whatever parameters they recommend. (Aka: Paul Boxing)
I would be very surprised if all three of these are equally hard, and I suspect that (1) is the easiest and by a long shot.
Making a human imitator AI, once you already have weakly superhuman AI is a matter of cutting down capabilities and I suspect that it can be achieved by distillation, i.e. using the weakly superhuman AI that we will soon have to make a controlled synthetic dataset for pretraining and finetuning and then a much larger and more thorough RLHF dataset.
Finally you’d need to make sure the model didn’t have too many parameters.