The linked post by Steven Byrnes uses the term “hardware overhang” to describe the situation where we have hardware much more powerful than would be needed but algorithms aren’t good enough. Your post here uses the term “algorithmic overhang”. One could justify either terminology, but clearly not both. (I think SB’s is better. Maybe something more explicit like “hardware-ahead-of-algorithms overhang” would be better than either, since evidently different people have different intuitions about which of two opposite situations an “X overhang” describes.)
The linked post by Steven Byrnes uses the term “hardware overhang” to describe the situation where we have hardware much more powerful than would be needed but algorithms aren’t good enough. Your post here uses the term “algorithmic overhang”. One could justify either terminology, but clearly not both.
Thank you for pointing this out. I think we are in a hardware-ahead-of-algorithms overhang.
Maybe worth pointing out that “hardware overhang” is a pretty old (>10years) and well known term that afaik was not coined by Steven Byrnes. So your title must be confusing to quite a lot of people.
The linked post by Steven Byrnes uses the term “hardware overhang” to describe the situation where we have hardware much more powerful than would be needed but algorithms aren’t good enough. Your post here uses the term “algorithmic overhang”. One could justify either terminology, but clearly not both. (I think SB’s is better. Maybe something more explicit like “hardware-ahead-of-algorithms overhang” would be better than either, since evidently different people have different intuitions about which of two opposite situations an “X overhang” describes.)
Thank you for pointing this out. I think we are in a hardware-ahead-of-algorithms overhang.
Maybe worth pointing out that “hardware overhang” is a pretty old (>10years) and well known term that afaik was not coined by Steven Byrnes. So your title must be confusing to quite a lot of people.