Predictor: The primary AI tasked with protecting the diamond. The predictor sees a video feed of the vault, predicts what actions are necessary to protect the diamond and how those actions will play out (for example, activating a trap door to eliminate a robber trying to steal the diamond), and then generates a video showing precisely what will happen.
I’d like to try making a correction here, though I might make some mistakes too.
The predictor is different from the AI that protects the diamond and doesn’t try to “choose” actions in order to accomplish any particular goal. Rather, it takes a starting video and a set of actions as input, then returns a prediction of what the ending video would be if those actions were carried out.
An agent could use this predictor to choose a set of actions that leads to videos that a human approves of, then carry out these plans. It could use some kind of search policy, like Monte-Carlo Tree Search, or even just enumerate through every possible action and figure out which one seems to be the best. For the purposes of this problem, we don’t really care; we just care that we have a predictor that uses some model of the world (which might take the form of a Bayes net) to guess what the output video will be. Then, the reporter can use the model to answer any questions asked by the human.
I think that makes sense. To rephrase, are you basically saying that the predictor is a subcomponent of the AI, like the reporter is? I didn’t catch that distinction in the report but looking back at it I think you’re right. But yeah doesn’t seem like the distinction matters much for what we’re doing.
I’d like to try making a correction here, though I might make some mistakes too.
The predictor is different from the AI that protects the diamond and doesn’t try to “choose” actions in order to accomplish any particular goal. Rather, it takes a starting video and a set of actions as input, then returns a prediction of what the ending video would be if those actions were carried out.
An agent could use this predictor to choose a set of actions that leads to videos that a human approves of, then carry out these plans. It could use some kind of search policy, like Monte-Carlo Tree Search, or even just enumerate through every possible action and figure out which one seems to be the best. For the purposes of this problem, we don’t really care; we just care that we have a predictor that uses some model of the world (which might take the form of a Bayes net) to guess what the output video will be. Then, the reporter can use the model to answer any questions asked by the human.
I think that makes sense. To rephrase, are you basically saying that the predictor is a subcomponent of the AI, like the reporter is? I didn’t catch that distinction in the report but looking back at it I think you’re right. But yeah doesn’t seem like the distinction matters much for what we’re doing.
It seems fair to call it a subcomponent, yeah