Here is a simple way to assess your value-of-life (from an article by Howard).
Imagine you have a deadly disease, certain to kill you. The doctor tells you that there is one cure, it works perfectly, and costs you nothing. However, it is very painful, like having wisdom teeth pulled continuously for 24 hours without anesthetic.
However, the doctor says there is one other possible solution. It is experimental, but also certain to work. However, it isn’t free. “How much is it?” you ask. “I forgot,” says the doctor. “So, you write down the most you would pay, I’ll find out the cost, and if the cost is less than you are willing to pay, I’ll sign you up for the treatment. Otherwise, I’ll sign you up for the painful procedure.” What do you write down? Call that dollar amount X. For example, you might decide that you wouldn’t pay more than $50,000.
Now scratch the above paragraph; actually the treatment is free. However, it isn’t perfectly effective. It always cures the disease, but there is a small chance that it will kill you. “What is the chance?” you ask. “I forgot,” says the doctor. “So, you write down the largest risk of death you are willing to take, I’ll find out the risk, and if the risk is less than you are willing to take, I’ll sign you up for the treatment. Otherwise, I’ll sign you up for the painful procedure.” What do you write down? Call that probability Y. For example, you might decide that you aren’t willing to take more than a half-percent chance of death to avoid the pain.
Now you’ve established that Pain = $X loss of dollars, and that Pain = Y probability of death. Transitivity implies that $X loss of dollars = Y probability of death. Divide X by Y and you have your value-of-life. Above, $50K/0.5% = $10M value-of-life.
If you want, you can divide by one million and get a dollar cost for a one-in-a-million chance of death (called a micromort). For example, my micromort value is $12 for small risks (larger risks are of course different; you can’t kill me for $12M). I use this value to make health and safety decisions.
Here is a simple way to assess your value-of-life (from an article by Howard).
Imagine you have a deadly disease, certain to kill you. The doctor tells you that there is one cure, it works perfectly, and costs you nothing. However, it is very painful, like having wisdom teeth pulled continuously for 24 hours without anesthetic.
However, the doctor says there is one other possible solution. It is experimental, but also certain to work. However, it isn’t free. “How much is it?” you ask. “I forgot,” says the doctor. “So, you write down the most you would pay, I’ll find out the cost, and if the cost is less than you are willing to pay, I’ll sign you up for the treatment. Otherwise, I’ll sign you up for the painful procedure.” What do you write down? Call that dollar amount X. For example, you might decide that you wouldn’t pay more than $50,000.
Now scratch the above paragraph; actually the treatment is free. However, it isn’t perfectly effective. It always cures the disease, but there is a small chance that it will kill you. “What is the chance?” you ask. “I forgot,” says the doctor. “So, you write down the largest risk of death you are willing to take, I’ll find out the risk, and if the risk is less than you are willing to take, I’ll sign you up for the treatment. Otherwise, I’ll sign you up for the painful procedure.” What do you write down? Call that probability Y. For example, you might decide that you aren’t willing to take more than a half-percent chance of death to avoid the pain.
Now you’ve established that Pain = $X loss of dollars, and that Pain = Y probability of death. Transitivity implies that $X loss of dollars = Y probability of death. Divide X by Y and you have your value-of-life. Above, $50K/0.5% = $10M value-of-life.
If you want, you can divide by one million and get a dollar cost for a one-in-a-million chance of death (called a micromort). For example, my micromort value is $12 for small risks (larger risks are of course different; you can’t kill me for $12M). I use this value to make health and safety decisions.
Would you accept a 95% chance of death for $36 million?