I am not saying anything weird, merely that the statements of the Newcomb’s problem I heard do not specify how Omega wins the game, merely that it wins a high percentage (all?) of the previous attempts. The same can be said for the punching game, played by a human (who, while quite smart about the volition of punching, is still defeatable).
There are algorithms that Omega could follow that are not defeatable (people like to discuss simulating players, and some others are possible too). Others might be defeatable. The correct decision theory in the punching game would learn how to defeat the punching game and walk away with $$$. The right decision theory in the Newcomb’s problem ought to first try to figure out if Omega is using a defeatable algorithm, and only one box if it is not, or if it is not possible to figure this out.
I am not saying anything weird, merely that the statements of the Newcomb’s problem I heard do not specify how Omega wins the game, merely that it wins a high percentage (all?) of the previous attempts. The same can be said for the punching game, played by a human (who, while quite smart about the volition of punching, is still defeatable).
There are algorithms that Omega could follow that are not defeatable (people like to discuss simulating players, and some others are possible too). Others might be defeatable. The correct decision theory in the punching game would learn how to defeat the punching game and walk away with $$$. The right decision theory in the Newcomb’s problem ought to first try to figure out if Omega is using a defeatable algorithm, and only one box if it is not, or if it is not possible to figure this out.