I was thinking about the difficulty of finite factored sets not understanding the uniform distribution over 4 elements, and it makes me feel like something fundamental needs to be recast. An analogy came to mind about eigenvectors vs. eigenspaces.
What we might like to be true about the unit eigenvectors of a matrix is that they are the unique unit vectors for which the linear transformation preserves direction. But if two eigenvectors have the same eigenvalue, the choice of eigenvectors is not unique—we could choose any pair on that plane. So really, it seems like we shouldn’t think about a matrix’s eigenvectors and (potentially repeated) eigenvalues; we should think about a matrix’s eigenvalues and eigenspaces, some of which might be more than 1-dimensional.
I wonder if there’s a similar move to be made when defining orthogonality. Maybe (for example) orthogonality would be more conveniently defined between two sets of partitions instead of between two partitions. Probably that specific idea fails, but maybe there’s something like this that could be done.
I was thinking about the difficulty of finite factored sets not understanding the uniform distribution over 4 elements, and it makes me feel like something fundamental needs to be recast. An analogy came to mind about eigenvectors vs. eigenspaces.
What we might like to be true about the unit eigenvectors of a matrix is that they are the unique unit vectors for which the linear transformation preserves direction. But if two eigenvectors have the same eigenvalue, the choice of eigenvectors is not unique—we could choose any pair on that plane. So really, it seems like we shouldn’t think about a matrix’s eigenvectors and (potentially repeated) eigenvalues; we should think about a matrix’s eigenvalues and eigenspaces, some of which might be more than 1-dimensional.
I wonder if there’s a similar move to be made when defining orthogonality. Maybe (for example) orthogonality would be more conveniently defined between two sets of partitions instead of between two partitions. Probably that specific idea fails, but maybe there’s something like this that could be done.
Hmm, I doubt the last paragraph about sets of partitions is going to be valuable, bet the eigenspace thinking might be useful.
Note that I gave my thoughts about how to deal with the uniform distribution over 4 elements in the thread responding to cousin_it.