I agree with Tom that there isn’t that much room to change the field equations once you have decided on the Riemannian tensor framework: gravity cannot be expressed as first-order differential equations and still fit with observation, while number of objects to build a set of second-order equations is very limited. The equations are the simplest possibility (with the cosmological constant as a slight uglification, but it is just a constant of integration).
But selecting the tensor framework, that is of course where all the bits had to go. It is not an obvious choice at all.
I agree with Tom that there isn’t that much room to change the field equations once you have decided on the Riemannian tensor framework: gravity cannot be expressed as first-order differential equations and still fit with observation, while number of objects to build a set of second-order equations is very limited. The equations are the simplest possibility (with the cosmological constant as a slight uglification, but it is just a constant of integration).
But selecting the tensor framework, that is of course where all the bits had to go. It is not an obvious choice at all.
It is interesting to note that Einstein’s last paper, “On the relativistic theory of the non-symmetric field” includes a discussion of the “strength” of different theories in terms of how many undetermined degrees of freedom they have. http://books.google.com/books?id=tB9Roi3YnAgC&pg=PA131&lpg=PA131&dq=%22relativistic+theory+of+the+non+symmetric+field%22&source=web&ots=EkMv5tudsI&sig=lkTQE94Ay1h2-qS0mcbGT3xa22M If I recall right, he finds his own theory to be rather flabby.