Context: When you state ‘If MR is true, then the mathematical universe is obviously bigger than the physical universe,just because most maths isn’t physical’ doesn’t follow, in my view. Why would MR being true mean that the mathematical universe is necessarily bigger than the physical universe?
Comment 1: “Because most maths isn’t physically applicable, as I stated, and you agreed.”
Response 1: I do agree that most maths isn’t physically applicable, but that doesn’t mean that for MR, the MU is obviously bigger (to clarify, for MU here, do you mean physical+maths, I am assuming not). For example, I might have many physical objects in my universe, and not all being mapped to by a mathematical abstraction. I have no way of ensuring that the universe is all totally mapped to. I make a supposition that in physics, we hold a view that it can (or should be). But I don’t know for sure, and so the relative sizes of physical + mathematical parts is hard to define. It may be the case the the mathematical part is indeed larger, but the fact that most maths isn’t physical doesn’t guarantee it, it would be something to do with limits on the size of the physical universe, and/or the scope of mathematics obtruding into it. Maybe most physical doesn’t get mapped to (though, I don’t believe that currently, it could definitely be proposed).
. But having a brief look, I’m honestly not sure how to match my work to this definition of supernatural.
Comment 2: “You have a communication issue, because you are not using “supernatural” in the expected way, and a PR issue, because a lot of your intended audience are going to reject the supernatural out of hand. Whence the downvoting.”
Response 2: Thank you for the view. The way I see it though, it is actually a good communication method, in that I have excited some commentary and engagement from the community—such as yourself—you have been very generous with your engagement. The rejection out-of-hand though accidentally demonstrates that the audience might not have been as attentive as they might pride themselves on, however, which itself is a useful insight to note.
Do I have to? I am anticipating my work can be standalone and not to try to use another person’s definition of supernatural. Here, I use it purely as ‘not in the universe’ where I’ve defined the universe in the way I describe in the work.
Comment 3: “You need to communicate clearly , and you don’t need to repell the reader”
Response 3: I am attempting to communicate as best I can, and am limited of course by my competence. Apologies if it doesn’t come up to scratch—I am doing my best. I also am not intending to repel the reader, but get some engagement, which was successful.
Also, the ‘do I have to’ was in the context of whether i need to match my work to this definition of supernatural, not based on communicating clearly, per se. I wasn’t aware of the work, but how else do I generate discussion to get some improvement from the lesswrong community? I have to start somewhere. I was as clear as my faculties allow. I tried to define the supernatural the way I see it. A comparison of that view and another work seems like a different topic beyond the scope of this post.
“Between mathematical realism and mathematical fictionalism , or between mathematical realism and naturalism?
The inherent contradiction I was meaning here was more the former: a Naturalist is bound into believing that the natural laws, mathematical principles governing nature (and so forth) are part of nature or an emergent reality,
Comment 4: Again, that’s not the same thing. The existence of X-ishly describable entities doesn’t imply the existence of free-standing X’s. For instance, we can describe the colours of external objects using the trichromic RGB system , but it’s definitely not out there.
Response 4: I didn’t say that the existence of X-describable entities implies free standing X’s. The idea of free standing X’s, ie a kind of Platonism is not something i set about to prove. I believe I assumed it as a starting point, and wanted to see how far I could get with it, as an exercise. So I wouldn’t argue it that way. I do state in the above quote that the Naturalist was bound to believing natural laws (by definition) and that I take it to mean that mathematical principles governing nature emerge from this same (physical) universe, as opposed to a more Platonic view of Mathematical Realism (ie. “out there” as you put it). Is that untrue? In regard to such a Platonic view, I would take it that the colours of objects using an RGB system, which are both concepts (the colours, and the RGB system) are abstractions that have an existence, and would be included as one of the abstractions in my formalism, that then get projected down in a reverse-epiphenomenal way, onto the physical-world object. (ie they are attributes of it, and attributes are abstractions).
Comment 1: “Because most maths isn’t physically applicable, as I stated, and you agreed.”
Response 1: I do agree that most maths isn’t physically applicable, but that doesn’t mean that for MR, the MU is obviously bigger (to clarify, for MU here, do you mean physical+maths, I am assuming not). For example, I might have many physical objects in my universe, and not all being mapped to by a mathematical abstraction. I have no way of ensuring that the universe is all totally mapped to. I make a supposition that in physics, we hold a view that it can (or should be). But I don’t know for sure, and so the relative sizes of physical + mathematical parts is hard to define. It may be the case the the mathematical part is indeed larger, but the fact that most maths isn’t physical doesn’t guarantee it, it would be something to do with limits on the size of the physical universe, and/or the scope of mathematics obtruding into it. Maybe most physical doesn’t get mapped to (though, I don’t believe that currently, it could definitely be proposed).
Comment 2: “You have a communication issue, because you are not using “supernatural” in the expected way, and a PR issue, because a lot of your intended audience are going to reject the supernatural out of hand. Whence the downvoting.”
Response 2: Thank you for the view. The way I see it though, it is actually a good communication method, in that I have excited some commentary and engagement from the community—such as yourself—you have been very generous with your engagement. The rejection out-of-hand though accidentally demonstrates that the audience might not have been as attentive as they might pride themselves on, however, which itself is a useful insight to note.
Comment 3: “You need to communicate clearly , and you don’t need to repell the reader”
Response 3: I am attempting to communicate as best I can, and am limited of course by my competence. Apologies if it doesn’t come up to scratch—I am doing my best. I also am not intending to repel the reader, but get some engagement, which was successful.
Also, the ‘do I have to’ was in the context of whether i need to match my work to this definition of supernatural, not based on communicating clearly, per se. I wasn’t aware of the work, but how else do I generate discussion to get some improvement from the lesswrong community? I have to start somewhere. I was as clear as my faculties allow. I tried to define the supernatural the way I see it. A comparison of that view and another work seems like a different topic beyond the scope of this post.
Comment 4: Again, that’s not the same thing. The existence of X-ishly describable entities doesn’t imply the existence of free-standing X’s. For instance, we can describe the colours of external objects using the trichromic RGB system , but it’s definitely not out there.
Response 4: I didn’t say that the existence of X-describable entities implies free standing X’s. The idea of free standing X’s, ie a kind of Platonism is not something i set about to prove. I believe I assumed it as a starting point, and wanted to see how far I could get with it, as an exercise. So I wouldn’t argue it that way. I do state in the above quote that the Naturalist was bound to believing natural laws (by definition) and that I take it to mean that mathematical principles governing nature emerge from this same (physical) universe, as opposed to a more Platonic view of Mathematical Realism (ie. “out there” as you put it). Is that untrue? In regard to such a Platonic view, I would take it that the colours of objects using an RGB system, which are both concepts (the colours, and the RGB system) are abstractions that have an existence, and would be included as one of the abstractions in my formalism, that then get projected down in a reverse-epiphenomenal way, onto the physical-world object. (ie they are attributes of it, and attributes are abstractions).