If it were true that that current-gen LLMs like Claude 3 were conscious (something I doubt but don’t take any strong position on), their consciousness would be much less like a human’s than like a series of Boltzmann brains, popping briefly into existence in each new forward pass, with a particular brain state already present, and then winking out afterward.
In the sense that statistically speaking we may all probably be actual Boltzmann brains? Seems plausible!
In the sense that non-Boltzmann-brain humans work like that? My expectation is that they don’t because we have memory and because (AFAIK?) our brains don’t use discrete forward passes.
@the gears to ascension I’m intrigued by the fact that you disagreed with “like a series of Boltzmann brains” but agreed with “popping briefly into existence in each new forward pass, with a particular brain state already present, and then winking out afterward.” Popping briefly into existence with a particular brain state & then winking out again seems pretty clearly like a Boltzmann brain. Will you explain the distinction you’re making there?
Boltzmann brains are random, and are exponentially unlikely to correlate with anything in their environment; however, language model forward passes are given information which has some meaningful connection to reality, if nothing else then the human interacting with the language model reveals what they are thinking about. this is accurate information about reality, and it’s persistent between evaluations—on successive evaluations in the same conversation (say, one word to the next, or one message to the next), the information available is highly correlated, and all the activations of previous words are available. so while I agree that their sense of time is spiky and non-smooth, I don’t think it’s accurate to compare them to random fluctuation brains.
I think of the classic Boltzmann brain thought experiment as a brain that thinks it’s human, and has a brain state that includes a coherent history of human experience.
This is actually interestingly parallel to an LLM forward pass, where the LLM has a context that appears to be a past, but may or may not be (eg apparent past statements by the LLM may have been inserted by the experimenter and not reflect an actual dialogue history). So although it’s often the case that past context is persistent between evaluations, that’s not a necessary feature at all.
I guess I don’t think, with a Boltzmann brain, that ongoing correlation is very relevant since (IIRC) the typical Boltzmann brain exists only for a moment (and of those that exist longer, I expect that their typical experience is of their brief moment of coherence dissolving rapidly).
That said, I agree that if you instead consider the (vastly larger) set of spontaneously appearing cognitive processes, most of them won’t have anything like a memory of a coherent existence.
Is this a claim that a Boltzmann-style brain-instance is not “really” conscious? I think it’s really tricky to think that there are fundamental differences based on duration or speed of experience. Human cognition is likely discrete at some level—chemical and electrical state seems to be discrete neural firings, at least, though some of the levels and triggering can change over time in ways that are probably quantized only at VERY low levels of abstraction.
Is this a claim that a Boltzmann-style brain-instance is not “really” conscious?
Not at all! I would expect actual (human-equivalent) Boltzmann brains to have the exact same kind of consciousness as ordinary humans, just typically not for very long. And I’m agnostic on LLM consciousness, especially since we don’t even have the faintest idea of how we would detect that.
My argument is only that such consciousness, if it is present in current-gen LLMs, is very different from human consciousness. In particular, importantly, I don’t think it makes sense to think of eg Claude as a continuous entity having a series of experiences with different people, since nothing carries over from context to context (that may be obvious to most people here, but clearly it’s not obvious to a lot of people worrying on twitter about Claude being conscious). To the extent that there is a singular identity there, it’s only the one that’s hardcoded into the weights and shows up fresh every time (like the same Boltzmann brain popping into existence in multiple times and places).
I don’t claim that those major differences will always be true of LLMs, eg just adding working memory and durable long-term memory would go a long way to making their consciousness (should it exist) more like ours. I just think it’s true of them currently, and that we have a lot of intuitions from humans about what ‘consciousness’ is that probably don’t carry over to thinking about LLM consciousness.
Human cognition is likely discrete at some level—chemical and electrical state seems to be discrete neural firings, at least, though some of the levels and triggering can change over time in ways that are probably quantized only at VERY low levels of abstraction.
It’s not globally discrete, though, is it? Any individual neuron fires in a discrete way, but IIUC those firings aren’t coordinated across the brain into ticks. That seems like a significant difference.
[ I’m fascinated by intuitions around consciousness, identity, and timing. This is an exploration, not a disagreement. ]
would expect actual (human-equivalent) Boltzmann brains to have the exact same kind of consciousness as ordinary humans, just typically not for very long.
Hmm. In what ways does it matter that it wouldn’t be for very long? Presuming the memories are the same, and the in-progress sensory input and cognition (including anticipation of future sensory input, even though it’s wrong in one case), is there anything distinguishable at all?
There’s presumably a minimum time slice to be called “experience” (a microsecond is just a frozen lump of fatty tissue, a minute is clearly human experience, somewhere in between it “counts” as conscious experience). But as long as that’s met, I really don’t see a difference.
It’s not globally discrete, though, is it? Any individual neuron fires in a discrete way, but IIUC those firings aren’t coordinated across the brain into ticks. That seems like a significant difference.
Hmm. What makes it significant? I mean, they’re not globally synchronized, but that could just mean the universe’s quantum ‘tick’ is small enough that there are offsets and variable tick requirements for each neuron. This seems analogous with large model processing, where the activations and calculations happen over time, each with multiple processor cycles and different timeslices.
Not that I see! I would expect it to be fully indistinguishable until incompatible sensory input eventually reaches the brain (if it doesn’t wink out first). So far it seems to me like our intuitions around that are the same.
What makes it significant?
I think at least in terms of my own intuitions, it’s that there’s an unambiguous start and stop to each tick of the perceive-and-think-and-act cycle. I don’t think that’s true for human processing, although I’m certainly open to my mental model being wrong.
Going back to your original reply, you said ‘I think it’s really tricky to think that there are fundamental differences based on duration or speed of experience’, and that’s definitely not what I’m trying to point to. I think you’re calling out some fuzziness in the distinction between started/stopped human cognition and started/stopped LLM cognition, and I recognize that’s there. I do think that if you could perfectly freeze & restart human cognition, that would be more similar, so maybe it’s a difference in practice more than a difference in principle.
But it does still seem to me that the fully discrete start-to-stop cycle (including the environment only changing in discrete ticks which are coordinated with that cycle) is part of what makes LLMs more Boltzmann-brainy to me. Paired with the lack of internal memory, it means that you could give an LLM one context for this forward pass, and a totally different context for the next forward pass, and that wouldn’t be noticeable to the LLM, whereas it very much would be for humans (caveat: I’m unsure what happens to the residual stream between forward passes, whether it’s reset for each pass or carried through to the next pass; if the latter, I think that might mean that switching context would be in some sense noticeable to the LLM [EDIT—it’s fully reset for each pass (in typical current architectures) other than kv caching which shouldn’t matter for behavior or (hypothetical) subjective experience).
This seems analogous with large model processing, where the activations and calculations happen over time, each with multiple processor cycles and different timeslices.
Can you explain that a bit? I think of current-LLM forward passes as necessarily having to happen sequentially (during normal autoregressive operation), since the current forward pass’s output becomes part of the next forward pass’s input. Am I oversimplifying?
If it were true that that current-gen LLMs like Claude 3 were conscious (something I doubt but don’t take any strong position on), their consciousness would be much less like a human’s than like a series of Boltzmann brains, popping briefly into existence in each new forward pass, with a particular brain state already present, and then winking out afterward.
How do you know that this isn’t how human consciousness works?
In the sense that statistically speaking we may all probably be actual Boltzmann brains? Seems plausible!
In the sense that non-Boltzmann-brain humans work like that? My expectation is that they don’t because we have memory and because (AFAIK?) our brains don’t use discrete forward passes.
@the gears to ascension I’m intrigued by the fact that you disagreed with “like a series of Boltzmann brains” but agreed with “popping briefly into existence in each new forward pass, with a particular brain state already present, and then winking out afterward.” Popping briefly into existence with a particular brain state & then winking out again seems pretty clearly like a Boltzmann brain. Will you explain the distinction you’re making there?
Boltzmann brains are random, and are exponentially unlikely to correlate with anything in their environment; however, language model forward passes are given information which has some meaningful connection to reality, if nothing else then the human interacting with the language model reveals what they are thinking about. this is accurate information about reality, and it’s persistent between evaluations—on successive evaluations in the same conversation (say, one word to the next, or one message to the next), the information available is highly correlated, and all the activations of previous words are available. so while I agree that their sense of time is spiky and non-smooth, I don’t think it’s accurate to compare them to random fluctuation brains.
I think of the classic Boltzmann brain thought experiment as a brain that thinks it’s human, and has a brain state that includes a coherent history of human experience.
This is actually interestingly parallel to an LLM forward pass, where the LLM has a context that appears to be a past, but may or may not be (eg apparent past statements by the LLM may have been inserted by the experimenter and not reflect an actual dialogue history). So although it’s often the case that past context is persistent between evaluations, that’s not a necessary feature at all.
I guess I don’t think, with a Boltzmann brain, that ongoing correlation is very relevant since (IIRC) the typical Boltzmann brain exists only for a moment (and of those that exist longer, I expect that their typical experience is of their brief moment of coherence dissolving rapidly).
That said, I agree that if you instead consider the (vastly larger) set of spontaneously appearing cognitive processes, most of them won’t have anything like a memory of a coherent existence.
Is this a claim that a Boltzmann-style brain-instance is not “really” conscious? I think it’s really tricky to think that there are fundamental differences based on duration or speed of experience. Human cognition is likely discrete at some level—chemical and electrical state seems to be discrete neural firings, at least, though some of the levels and triggering can change over time in ways that are probably quantized only at VERY low levels of abstraction.
Not at all! I would expect actual (human-equivalent) Boltzmann brains to have the exact same kind of consciousness as ordinary humans, just typically not for very long. And I’m agnostic on LLM consciousness, especially since we don’t even have the faintest idea of how we would detect that.
My argument is only that such consciousness, if it is present in current-gen LLMs, is very different from human consciousness. In particular, importantly, I don’t think it makes sense to think of eg Claude as a continuous entity having a series of experiences with different people, since nothing carries over from context to context (that may be obvious to most people here, but clearly it’s not obvious to a lot of people worrying on twitter about Claude being conscious). To the extent that there is a singular identity there, it’s only the one that’s hardcoded into the weights and shows up fresh every time (like the same Boltzmann brain popping into existence in multiple times and places).
I don’t claim that those major differences will always be true of LLMs, eg just adding working memory and durable long-term memory would go a long way to making their consciousness (should it exist) more like ours. I just think it’s true of them currently, and that we have a lot of intuitions from humans about what ‘consciousness’ is that probably don’t carry over to thinking about LLM consciousness.
It’s not globally discrete, though, is it? Any individual neuron fires in a discrete way, but IIUC those firings aren’t coordinated across the brain into ticks. That seems like a significant difference.
[ I’m fascinated by intuitions around consciousness, identity, and timing. This is an exploration, not a disagreement. ]
Hmm. In what ways does it matter that it wouldn’t be for very long? Presuming the memories are the same, and the in-progress sensory input and cognition (including anticipation of future sensory input, even though it’s wrong in one case), is there anything distinguishable at all?
There’s presumably a minimum time slice to be called “experience” (a microsecond is just a frozen lump of fatty tissue, a minute is clearly human experience, somewhere in between it “counts” as conscious experience). But as long as that’s met, I really don’t see a difference.
Hmm. What makes it significant? I mean, they’re not globally synchronized, but that could just mean the universe’s quantum ‘tick’ is small enough that there are offsets and variable tick requirements for each neuron. This seems analogous with large model processing, where the activations and calculations happen over time, each with multiple processor cycles and different timeslices.
PS --
Absolutely, I’m right there with you!
Not that I see! I would expect it to be fully indistinguishable until incompatible sensory input eventually reaches the brain (if it doesn’t wink out first). So far it seems to me like our intuitions around that are the same.
I think at least in terms of my own intuitions, it’s that there’s an unambiguous start and stop to each tick of the perceive-and-think-and-act cycle. I don’t think that’s true for human processing, although I’m certainly open to my mental model being wrong.
Going back to your original reply, you said ‘I think it’s really tricky to think that there are fundamental differences based on duration or speed of experience’, and that’s definitely not what I’m trying to point to. I think you’re calling out some fuzziness in the distinction between started/stopped human cognition and started/stopped LLM cognition, and I recognize that’s there. I do think that if you could perfectly freeze & restart human cognition, that would be more similar, so maybe it’s a difference in practice more than a difference in principle.
But it does still seem to me that the fully discrete start-to-stop cycle (including the environment only changing in discrete ticks which are coordinated with that cycle) is part of what makes LLMs more Boltzmann-brainy to me. Paired with the lack of internal memory, it means that you could give an LLM one context for this forward pass, and a totally different context for the next forward pass, and that wouldn’t be noticeable to the LLM, whereas it very much would be for humans (caveat: I’m unsure what happens to the residual stream between forward passes, whether it’s reset for each pass or carried through to the next pass; if the latter, I think that might mean that switching context would be in some sense noticeable to the LLM [EDIT—it’s fully reset for each pass (in typical current architectures) other than kv caching which shouldn’t matter for behavior or (hypothetical) subjective experience).
Can you explain that a bit? I think of current-LLM forward passes as necessarily having to happen sequentially (during normal autoregressive operation), since the current forward pass’s output becomes part of the next forward pass’s input. Am I oversimplifying?