PSA. The report includes a Colab notebook that allows you to run Ajeya’s model with your own estimates for input variables. Some of the variables are “How many FLOP/s will a transformative AI run on?”, “How many datapoints will be required to train a transformative AI?”, and “How likely are various models for transformative AI (e.g. scale up deep learning, recapitulate learning in human lifetime, recapitulate evolution)?”. If you enter your estimates, the model will calculate your personal CDF for when transformative AI arrives.
Here is a screenshot from the Colab notebook. Your distribution (“Your forecast”) is shown alongside the distributions of Ajeya, Tom Davidson (Open Philanthropy) and Jacob Hilton (OpenAI). You can also read their explanations for their distributions under “Notes”. (I work at Ought and we worked on the Elicit features in this notebook.)
Screenshot from Colab notebook included in Ajeya’s report
PSA. The report includes a Colab notebook that allows you to run Ajeya’s model with your own estimates for input variables. Some of the variables are “How many FLOP/s will a transformative AI run on?”, “How many datapoints will be required to train a transformative AI?”, and “How likely are various models for transformative AI (e.g. scale up deep learning, recapitulate learning in human lifetime, recapitulate evolution)?”. If you enter your estimates, the model will calculate your personal CDF for when transformative AI arrives.
Here is a screenshot from the Colab notebook. Your distribution (“Your forecast”) is shown alongside the distributions of Ajeya, Tom Davidson (Open Philanthropy) and Jacob Hilton (OpenAI). You can also read their explanations for their distributions under “Notes”. (I work at Ought and we worked on the Elicit features in this notebook.)