Well, it’s good news if you didn’t expect it to be possible at all (is that anyone here?), but it’s bad news if you were expecting it to be easy or give high gains.
The result seems to say only that X percent of the genome was related in any way; when it comes time to actually predict intelligence, they only get ‘1% of the variance of crystallized and fluid cognitive phenotypes in an independent sample’. Given that they cover a lot of genetic information and that with this sort of thing, there seem to be diminishing returns, that suggests the final product will only be a few percent, and nowhere near the ceiling set by genetic influence. Maybe a few points is worthwhile but embryo selection is an expensive procedure...
We already knew that there weren’t common variants of large effect. Conditioning on that, more heritability from common variants of small effect is better for embryo selection than heritability from rare variants.
Well, it’s good news if you didn’t expect it to be possible at all (is that anyone here?), but it’s bad news if you were expecting it to be easy or give high gains.
The result seems to say only that X percent of the genome was related in any way; when it comes time to actually predict intelligence, they only get ‘1% of the variance of crystallized and fluid cognitive phenotypes in an independent sample’. Given that they cover a lot of genetic information and that with this sort of thing, there seem to be diminishing returns, that suggests the final product will only be a few percent, and nowhere near the ceiling set by genetic influence. Maybe a few points is worthwhile but embryo selection is an expensive procedure...
We already knew that there weren’t common variants of large effect. Conditioning on that, more heritability from common variants of small effect is better for embryo selection than heritability from rare variants.