The existence of the Higg’s is one of the rare bits of physics that doesn’t average out under renormalization.
The reason is that the Higgs is deeply related to the overall symmetry of the whole standard model- you start with a symmetry group SU(2)xU(1) and then the Higgs messes with the symmetry so you end up with just U(1) symmetry. What the theory predicts is relationships between the Higgs, the W and Z boson, but not the absolute scale. The general rule is RG flow respects symmetries, but other stuff gets washed out.
This is why the prediction was actually “at least 1 scalar particle that interacts with W and Z bosons”. But there are lots of models consistent with this- it could have been a composite particle made of new quark-like-things (technicolor models), there could be multiple Higgs (2 in SUSY, dozens in some grand unified models),etc. So it’s sort of an existence proof with no details.
The existence of the Higg’s is one of the rare bits of physics that doesn’t average out under renormalization.
The reason is that the Higgs is deeply related to the overall symmetry of the whole standard model- you start with a symmetry group SU(2)xU(1) and then the Higgs messes with the symmetry so you end up with just U(1) symmetry. What the theory predicts is relationships between the Higgs, the W and Z boson, but not the absolute scale. The general rule is RG flow respects symmetries, but other stuff gets washed out.
This is why the prediction was actually “at least 1 scalar particle that interacts with W and Z bosons”. But there are lots of models consistent with this- it could have been a composite particle made of new quark-like-things (technicolor models), there could be multiple Higgs (2 in SUSY, dozens in some grand unified models),etc. So it’s sort of an existence proof with no details.