The important thing for alignment work isn’t the median prediction; if we had an alignment solution just by then, we’d have a 50% chance of dying from that lack.
I think the biggest takeaway is that nobody has a very precise and reliable prediction, so if we want to have good alignment plans in advance of AGI, we’d better get cracking.
I think Daniel’s estimate does include a pretty specific and plausible model of a path to AGI, so I take his the most seriously. My model of possible AGI architectures requires even less compute than his, but I think the Hofstadter principle applies to AGI development if not compute progress.
Estimates in the absence of gears-level models of AGI seem much more uncertain, which might be why Ajeya and Ege’s have much wider distributions.
The important thing for alignment work isn’t the median prediction; if we had an alignment solution just by then, we’d have a 50% chance of dying from that lack.
I think the biggest takeaway is that nobody has a very precise and reliable prediction, so if we want to have good alignment plans in advance of AGI, we’d better get cracking.
I think Daniel’s estimate does include a pretty specific and plausible model of a path to AGI, so I take his the most seriously. My model of possible AGI architectures requires even less compute than his, but I think the Hofstadter principle applies to AGI development if not compute progress.
Estimates in the absence of gears-level models of AGI seem much more uncertain, which might be why Ajeya and Ege’s have much wider distributions.