Of course it is what happens to whole brains that are vitrified that really matters to cryonics. The only paper published so far on the technology presently used in cryonics applied to whole brains is this one
Unlike slices, there is no expectation that cell viability is preserved in whole brains because the cryoprotectant exposure time is longer. However connectivity and extensive biochemical information is believed to be preserved, as these micrographs suggest. It is presumed, but not proven, that the effect of thermal stress fractures at cryogenic temperatures is displacement of fracture planes. This would theoretically still preserve connectivity information, although requiring hyper-advanced technology to do anything with that information.
Animals with more sophisticated nervous systems than nematodes can survive vitrification.
http://www.ncbi.nlm.nih.gov/pubmed/20086136
Even more sophisticated neural networks, mammalian brain slices, can now be vitrified with present technology.
http://www.21cm.com/pdfs/hippo_published.pdf
Of course it is what happens to whole brains that are vitrified that really matters to cryonics. The only paper published so far on the technology presently used in cryonics applied to whole brains is this one
http://www.alcor.org/Library/pdfs/Lemler-Annals.pdf
with more micrographs from that study here
http://www.alcor.org/Library/html/cambridge.html
and many more here
http://www.alcor.org/Library/html/micrographs.html
Unlike slices, there is no expectation that cell viability is preserved in whole brains because the cryoprotectant exposure time is longer. However connectivity and extensive biochemical information is believed to be preserved, as these micrographs suggest. It is presumed, but not proven, that the effect of thermal stress fractures at cryogenic temperatures is displacement of fracture planes. This would theoretically still preserve connectivity information, although requiring hyper-advanced technology to do anything with that information.