A really smart physicist may be highly competent at say string theory, but know very little about french
pasteries or cuda programming or—more to the point—solomonoff induction.
I am pretty sure jacob_connell specifically brought up Solomonoff induction. I am still waiting for him to explain why I (let alone Ed Witten) should care about this idea.
Since being rational or knowing about Bayesian epistemology is important in every field of science
How do you know what is important in every field of science? Are you a scientist? Do you publish? Where is your confidence coming from, first principles?
Solomonoff induction is like an ideal engine for generalized intelligence, which is very cool!
Whether Solomonoff induction is cool or not is a matter of opinion (and “mathematical taste,”) but more to the point the claim seems to be it’s not only cool but vital for physicists to know about. I want to know why. It seems fully useless to me.
we cannot ask of anyone, even geniuses, to transcend their time.
Jaynes died in 1997. Bayesian networks (the correct bit of math to explain what is going on with Bell inequalities) were written up in book form in 1988, and were known about in various special case forms long before that.
Where is your confidence coming from, first principles?
Well, yes of course. Cox’ theorem. Journals are starting to refute papers based on the “p<0.05” principle. Many studies in medicine and psychology cannot be replicated. Scientists are using inferior analysis methods when better are available just because they were not taught to. I do say there’s a desperate need to divulge Bayesian thinking.
Jaynes died in 1997. Bayesian networks (the correct bit of math to explain what is going on with Bell inequalities) were written up in book form in 1988, and were known about in various special case forms long before that.
I wasn’t referring to that. Jaynes knew that quantum mechanics was incompatible with the epistemic view of probability, and from his writing, while never explicit, it’s clear that he was thinking about a hidden variables model. Undisputable violation of the Bell inequalities were performed only this year. Causality was published in 2001. We still don’t know how to stitch epistemic probabilities and quantum causality. What I’m saying is that the field was in motion when Jaynes died, and we still don’t know a large deal about it. As I said, we cannot ask anyone not to hold crazy ideas from time to time.
Datapoint: in [biological] systematics in its broadest sense, Bayesian methods are increasingly important (molecular evolution studies,...), but I’ve never heard about pure Bayesian epistemology being in demand. Maybe because we leave it all to our mathematicians.
Part of the issue I keep harping about is people keep confusing Bayes rule, Bayesian networks, Bayesian statistical inference, and Bayesian epistemology. I don’t have any issue with a thoughtful use of Bayesian statistical inference when it is appropriate—how could I?
My issue is people being confused, or people having delusions of grandeur.
I am pretty sure jacob_connell specifically brought up Solomonoff induction. I am still waiting for him to explain why I (let alone Ed Witten) should care about this idea.
How do you know what is important in every field of science? Are you a scientist? Do you publish? Where is your confidence coming from, first principles?
Whether Solomonoff induction is cool or not is a matter of opinion (and “mathematical taste,”) but more to the point the claim seems to be it’s not only cool but vital for physicists to know about. I want to know why. It seems fully useless to me.
Jaynes died in 1997. Bayesian networks (the correct bit of math to explain what is going on with Bell inequalities) were written up in book form in 1988, and were known about in various special case forms long before that.
???
Well, yes of course. Cox’ theorem. Journals are starting to refute papers based on the “p<0.05” principle. Many studies in medicine and psychology cannot be replicated. Scientists are using inferior analysis methods when better are available just because they were not taught to.
I do say there’s a desperate need to divulge Bayesian thinking.
I wasn’t referring to that. Jaynes knew that quantum mechanics was incompatible with the epistemic view of probability, and from his writing, while never explicit, it’s clear that he was thinking about a hidden variables model.
Undisputable violation of the Bell inequalities were performed only this year. Causality was published in 2001. We still don’t know how to stitch epistemic probabilities and quantum causality.
What I’m saying is that the field was in motion when Jaynes died, and we still don’t know a large deal about it. As I said, we cannot ask anyone not to hold crazy ideas from time to time.
Datapoint: in [biological] systematics in its broadest sense, Bayesian methods are increasingly important (molecular evolution studies,...), but I’ve never heard about pure Bayesian epistemology being in demand. Maybe because we leave it all to our mathematicians.
Part of the issue I keep harping about is people keep confusing Bayes rule, Bayesian networks, Bayesian statistical inference, and Bayesian epistemology. I don’t have any issue with a thoughtful use of Bayesian statistical inference when it is appropriate—how could I?
My issue is people being confused, or people having delusions of grandeur.