Thank you very much for your reaction to this post. As it happens, I find myself in agreement with you. I leaned too hard in the direction of avoiding any discussion of mathematics. The next post is already written to clarify that sentences are all about nouns and verbs because we use sentences to model reality, and reality seems to consist of nouns and verbs. (Cats, drinking, milk, etc., are all part of reality. Even adjectives like “blue” are broken down by our physics into nouns and verbs.) We use various specific kinds of mathematics to model various specific parts of reality, and so various specific kinds of mathematics themselves boil down to nouns and verbs. So when you do a “mathematics of math” it ends up being a mathematics that is analogous to a mathematics of nouns and verbs, which get called objects and morphisms respectively. (We probably can’t carry this analogy forever—I don’t know that there’s a real-world language analogy to n-categories. But that won’t come up anyway.) I’ll very much look forward to your reaction to the next post, which motivates category theory as a general description of how you’d want to model pretty much anything in a universe of cause-and-effect, which correspondingly generalizes, almost as a byproduct, the mathematics any human is likely to invent.
There are many options for being clearer about objects and morphisms in this post, and I will consider them...I will also take pains to ensure it is not necessary to reconsider future posts for this particular mistake, thanks to you.
Thank you very much for your reaction to this post. As it happens, I find myself in agreement with you. I leaned too hard in the direction of avoiding any discussion of mathematics. The next post is already written to clarify that sentences are all about nouns and verbs because we use sentences to model reality, and reality seems to consist of nouns and verbs. (Cats, drinking, milk, etc., are all part of reality. Even adjectives like “blue” are broken down by our physics into nouns and verbs.) We use various specific kinds of mathematics to model various specific parts of reality, and so various specific kinds of mathematics themselves boil down to nouns and verbs. So when you do a “mathematics of math” it ends up being a mathematics that is analogous to a mathematics of nouns and verbs, which get called objects and morphisms respectively. (We probably can’t carry this analogy forever—I don’t know that there’s a real-world language analogy to n-categories. But that won’t come up anyway.) I’ll very much look forward to your reaction to the next post, which motivates category theory as a general description of how you’d want to model pretty much anything in a universe of cause-and-effect, which correspondingly generalizes, almost as a byproduct, the mathematics any human is likely to invent.
There are many options for being clearer about objects and morphisms in this post, and I will consider them...I will also take pains to ensure it is not necessary to reconsider future posts for this particular mistake, thanks to you.
Do you know the monads are like burritos problem? Do you have a plan for how this sequence isn’t going to end up being “mathematics is like burritos”?