It’s interesting that you choose dividing by zero as your comparison to infinity, because there are infinite possible solutions to x/0.
I think if you ask a mathematician what x/0 is, they’ll say “undefined” or “that’s not a valid question”. But if you ask how many natural numbers there are they’ll say “infinity” (or ℵ-zero). But we could have defined x/0 as “foo” to see what resulted, like sqrt(-1) is i. But I think not much results and so people don’t bother, and maybe we shouldn’t have bothered with infinity either.
(I don’t think the same about infinitesimals though! Analysis is a valid field of study!)
how often was zero (or nothingness) included in the paradoxes in the book?
There’s one of the silly 1==2 tricks where a divide-by-zero is obfuscated. There’s a number that involve infinite series, or infinite processes. The chapters on formal systems, voting, physics, etc don’t involve such things though, so I wouldn’t say that they’re all based on it.
I think if you ask a mathematician what x/0 is, they’ll say “undefined” or “that’s not a valid question”. But if you ask how many natural numbers there are they’ll say “infinity” (or ℵ-zero). But we could have defined x/0 as “foo” to see what resulted, like sqrt(-1) is i. But I think not much results and so people don’t bother, and maybe we shouldn’t have bothered with infinity either.
(I don’t think the same about infinitesimals though! Analysis is a valid field of study!)
There’s one of the silly 1==2 tricks where a divide-by-zero is obfuscated. There’s a number that involve infinite series, or infinite processes. The chapters on formal systems, voting, physics, etc don’t involve such things though, so I wouldn’t say that they’re all based on it.