With regard to “How should you develop intellectually, in order to become the kind of person who would have accepted heliocentrism during the Copernican revolution?”
I think a possibly better question might be “How should you develop intellectually, in order to become the kind of person who would have considered both geocentrism and heliocentrism plausible with probability less than 0.5 and greater than 0.1 during the Copernican revolution?”
edit: May have caused confusion, alternative phrasing of same idea:
who would have considered geocentrism plausible with probability less than 0.5 and greater than 0.1 and would have considered heliocentrism plausible with probability less than 0.5 and greater than 0.1
I disagree. The point of the post is not that these theories were on balance equally plausible during the Renaissance. It’s written so as to overemphasize the evidence for geocentrism, but that’s mostly to counterbalance standard science education.
In fact, one my key motivations for writing it—and a point where I strongly disagree with people like Kuhn and Feyerabend—is that I think heliocentrism was more plausible during that time. It’s not that Copernicus, Kepler Descartes and Galileo were lucky enough to be overconfident in the right direction, and really should just have remained undecided. Rather, I think they did something very right (and very Bayesian). And I want to know what that was.
I feel like you may have gone too far in the other direction then, since what I got out of this was definitely “there wasn’t any evidence for heliocentrism and people just liked it better for philosophical reasons”. As far as I know, the standard science education explanation for heliocentrism involves newtonian physics, observations that people weren’t able to at this time (like you said, Tycho tried), and hindsight.
Can you expand on what the evidence that should have convinced people was? I feel like this article is a puzzle that’s missing key information.
They had arguments about physics that the OP weirdly downplays. Like I said below: Copernicus disliked the equant because it contradicted the most straightforward reading of Ptolemy’s own physics; Kepler unambiguously disproved scholastic physics. Also, Galileo discovered Galilean relativity. He definitely made enough observations to show this last idea had something to it, unlike the scholastic explanation of heavenly bodies.
Galileo’s observations indicating that the earth might not uniquely different from other planets, and the mathematical aesthetic of heliocentrism that Benquo points to above.
But as mentioned in the post, I’m mostly trying to point to a confusion and ask questions, not provide answers. There have been many great comments, and I think the fact that you perceived the post that way is improtant. I might rewrite it to reflect those things.
In fact, one my key motivations for writing it—and a point where I strongly disagree with people like Kuhn and Feyerabend—is that I think heliocentrism was more plausible during that time.
I think this could be made clearer in the post itself, because whether or not there were good reasons around at the time is prior to whether or not we should try be like the heliocentrists.
Rather, I think they did something very right (and very Bayesian). And I want to know what that was.
This reasoning is itself quite non-Bayesian: exploring possibility-space, rather than updating a probability distribution over known unknowns. And maybe it’s part of what the heliocentrists were doing right.
Do you think selection bias might play a role? Maybe the biggest breakthroughs tend to come from headstrong and philosophically-inclined scientists, but most such scientists we never hear about, and being headstrong and philosophical isn’t epistemically hygenic in general.
Nitpick: as I understand, Feyerabend would agree. His main argument seems to be “any simple methodology for deciding whether a scientific theory is true or false (such as falsificationism) would have missed important advances such as heliocentrism, Newton’s theory of gravity, and relativity, therefore philosophers of science should stop trying to formulate simple accept/reject methodologies.”
I think he argues that any methododology—not just any simple methodology—will fail in some cases. The reason is that there is something “irrational”, that is, irreducibly sociological, about scientific progess. I disagree because I think there is an optimal methodology for intellectual progess (Bayesian inference), and successful inference is ultimately reducible to approximations of it.
Bayesian inference only functions within known solution-space. Spotting things outside of known solution space, while rare, is essential for the progression of science – and can’t be modelled simply as Bayesian inference.
With regard to “How should you develop intellectually, in order to become the kind of person who would have accepted heliocentrism during the Copernican revolution?”
I think a possibly better question might be “How should you develop intellectually, in order to become the kind of person who would have considered both geocentrism and heliocentrism plausible with probability less than 0.5 and greater than 0.1 during the Copernican revolution?”
edit: May have caused confusion, alternative phrasing of same idea:
who would have considered geocentrism plausible with probability less than 0.5 and greater than 0.1 and would have considered heliocentrism plausible with probability less than 0.5 and greater than 0.1
I disagree. The point of the post is not that these theories were on balance equally plausible during the Renaissance. It’s written so as to overemphasize the evidence for geocentrism, but that’s mostly to counterbalance standard science education.
In fact, one my key motivations for writing it—and a point where I strongly disagree with people like Kuhn and Feyerabend—is that I think heliocentrism was more plausible during that time. It’s not that Copernicus, Kepler Descartes and Galileo were lucky enough to be overconfident in the right direction, and really should just have remained undecided. Rather, I think they did something very right (and very Bayesian). And I want to know what that was.
I feel like you may have gone too far in the other direction then, since what I got out of this was definitely “there wasn’t any evidence for heliocentrism and people just liked it better for philosophical reasons”. As far as I know, the standard science education explanation for heliocentrism involves newtonian physics, observations that people weren’t able to at this time (like you said, Tycho tried), and hindsight.
Can you expand on what the evidence that should have convinced people was? I feel like this article is a puzzle that’s missing key information.
+1
They had arguments about physics that the OP weirdly downplays. Like I said below: Copernicus disliked the equant because it contradicted the most straightforward reading of Ptolemy’s own physics; Kepler unambiguously disproved scholastic physics. Also, Galileo discovered Galilean relativity. He definitely made enough observations to show this last idea had something to it, unlike the scholastic explanation of heavenly bodies.
Galileo’s observations indicating that the earth might not uniquely different from other planets, and the mathematical aesthetic of heliocentrism that Benquo points to above.
But as mentioned in the post, I’m mostly trying to point to a confusion and ask questions, not provide answers. There have been many great comments, and I think the fact that you perceived the post that way is improtant. I might rewrite it to reflect those things.
First—great post.
I think this could be made clearer in the post itself, because whether or not there were good reasons around at the time is prior to whether or not we should try be like the heliocentrists.
This reasoning is itself quite non-Bayesian: exploring possibility-space, rather than updating a probability distribution over known unknowns. And maybe it’s part of what the heliocentrists were doing right.
Do you think selection bias might play a role? Maybe the biggest breakthroughs tend to come from headstrong and philosophically-inclined scientists, but most such scientists we never hear about, and being headstrong and philosophical isn’t epistemically hygenic in general.
Nitpick: as I understand, Feyerabend would agree. His main argument seems to be “any simple methodology for deciding whether a scientific theory is true or false (such as falsificationism) would have missed important advances such as heliocentrism, Newton’s theory of gravity, and relativity, therefore philosophers of science should stop trying to formulate simple accept/reject methodologies.”
I think he argues that any methododology—not just any simple methodology—will fail in some cases. The reason is that there is something “irrational”, that is, irreducibly sociological, about scientific progess. I disagree because I think there is an optimal methodology for intellectual progess (Bayesian inference), and successful inference is ultimately reducible to approximations of it.
Bayesian inference only functions within known solution-space. Spotting things outside of known solution space, while rare, is essential for the progression of science – and can’t be modelled simply as Bayesian inference.