There are a lot of systems that look almost like the natural numbers but clearly are not. I claim that even if you replace 5 with a succession of weaker axioms you can still get objects that are clearly not the natural numbers.
Consider for example the much weaker claim that every element in N is either 0 or the successor of some other element. It is still easy to see that one can have things that don’t look at all like N. And one can keep adding additional theorems about what N needs to satisfy and still get objects that are pretty concrete and don’t look like what we want the natural numbers to satisfy.
You can actually get some other very weird systems if you want to play around. For example, if you have some underlying set theory and replace induction with the well-ordering principle (which is equivalent modulo some minor technicalities) you can then look at some very interesting systems. For example, well-ordering is second-order, and applies to all sets, so this is in some sense stronger than some first order descriptions of PA where you replace induction with a separate induction axiom for each definable predicate. So one obvious system then is to restrict your well-ordering claim so that it quantifies not over all subsets but over all subsets of some form. Visualizing what such weakened versions of N look like can be quite hard.
There are a lot of systems that look almost like the natural numbers but clearly are not. I claim that even if you replace 5 with a succession of weaker axioms you can still get objects that are clearly not the natural numbers.
Consider for example the much weaker claim that every element in N is either 0 or the successor of some other element. It is still easy to see that one can have things that don’t look at all like N. And one can keep adding additional theorems about what N needs to satisfy and still get objects that are pretty concrete and don’t look like what we want the natural numbers to satisfy.
You can actually get some other very weird systems if you want to play around. For example, if you have some underlying set theory and replace induction with the well-ordering principle (which is equivalent modulo some minor technicalities) you can then look at some very interesting systems. For example, well-ordering is second-order, and applies to all sets, so this is in some sense stronger than some first order descriptions of PA where you replace induction with a separate induction axiom for each definable predicate. So one obvious system then is to restrict your well-ordering claim so that it quantifies not over all subsets but over all subsets of some form. Visualizing what such weakened versions of N look like can be quite hard.