I guess that makes some philosophical sense. Not connected to any real-life decision making, though.
The problem was brought up in the context of making a computer program that correctly maximizes expected utility in all cases. Yes, in “real life” you can just ignore the mugger, but I don’t know of a rigorous way of proving that’s rational—your ability to ignore the mugger might well be a case of you getting the answer wrong, despite it seeming intuitively correct.
If you think you have a definitive solution, please show your work, in math.
If you think you have a definitive solution, please show your work, in math.
Irrelevant, because the original thread started with my reply to:
It would seem rational to accept any argument that is not fallacious; but this leads to consideration of problems such as Pascal’s mugging and other exploits.
to which I pointed out that it is not rational to simply accept any argument that does not appear fallacious, not in the way EY defines rationality (as winning). If you apply the maxim “extraordinary claims require extraordinary evidence” (e.g. requesting to show at least a simulated amoeba before you consider the mugger’s claims of simulating people any further), you win whether the mugger bluffs or not. WIN!
I guess that makes some philosophical sense. Not connected to any real-life decision making, though.
The problem was brought up in the context of making a computer program that correctly maximizes expected utility in all cases. Yes, in “real life” you can just ignore the mugger, but I don’t know of a rigorous way of proving that’s rational—your ability to ignore the mugger might well be a case of you getting the answer wrong, despite it seeming intuitively correct.
If you think you have a definitive solution, please show your work, in math.
Irrelevant, because the original thread started with my reply to:
to which I pointed out that it is not rational to simply accept any argument that does not appear fallacious, not in the way EY defines rationality (as winning). If you apply the maxim “extraordinary claims require extraordinary evidence” (e.g. requesting to show at least a simulated amoeba before you consider the mugger’s claims of simulating people any further), you win whether the mugger bluffs or not. WIN!