That is outstanding! My Xmas present (you decide what you want to substitue for X) from Less Wrong! I understood the prediction, the fact that the result would show up as a dip in the coincidence of arrival times, and when the veil was finally lifted the experiment had been reported in 1987 with the “HOM dip” as the signal result!
It is interesting to note that in some sense you get the opposite result if you use electrons instead of photons. Photons and other bosons give the HOM dip, a suppression of coincidence in the two detectors. Electrons and other fermions give a HOM peak: when two identical fermions pass through the beam splitter you are guaranteed to see one in each detector, they NEVER both head for the same detector! This result is documented , although I don’t know if it has been experimentally verified.
So the things that really help me understand and accept the original article are
1) The Wikipedia article, explaining the effect in standard quantum terms and citing an experiment. 2) Understanding that the result applies to Bosons and the opposite to Fermions. It feels like a Boson result, and knowing you get the opposite effect for Fermions relieves the requirement to find your mathematical treatment bulletproof, as it doesn’t apply for all particles.
Thanks to everybody who put effort in to clearing this up!
That is outstanding! My Xmas present (you decide what you want to substitue for X) from Less Wrong! I understood the prediction, the fact that the result would show up as a dip in the coincidence of arrival times, and when the veil was finally lifted the experiment had been reported in 1987 with the “HOM dip” as the signal result!
It is interesting to note that in some sense you get the opposite result if you use electrons instead of photons. Photons and other bosons give the HOM dip, a suppression of coincidence in the two detectors. Electrons and other fermions give a HOM peak: when two identical fermions pass through the beam splitter you are guaranteed to see one in each detector, they NEVER both head for the same detector! This result is documented , although I don’t know if it has been experimentally verified.
So the things that really help me understand and accept the original article are 1) The Wikipedia article, explaining the effect in standard quantum terms and citing an experiment.
2) Understanding that the result applies to Bosons and the opposite to Fermions. It feels like a Boson result, and knowing you get the opposite effect for Fermions relieves the requirement to find your mathematical treatment bulletproof, as it doesn’t apply for all particles.
Thanks to everybody who put effort in to clearing this up!