Hm, I’m not sure the thermometer can conclude that it’s accelerating from seeing the black body radiation. I think it’s equivalent to there being an event horizon behind it emitting hawking radiation (this happens when you accelerate at a constant rate). The thermometer can’t tell if it’s next to a black hole or if it’s accelerating. Could be wrong though, but I vaguely remember something along these lines.
I don’t see anything incorrect in what you say. (Sounds to me like a direct consequence of the equivalence principle, although I’m no GR expert.) But I’m assuming away the possibility of rogue black holes in this hypothetical, since I’m wondering whether a sufficiently sensitive sensor could detect its own acceleration even inside an otherwise empty universe (or at least without reference to the rest of the cosmos).
Hm, I’m not sure the thermometer can conclude that it’s accelerating from seeing the black body radiation. I think it’s equivalent to there being an event horizon behind it emitting hawking radiation (this happens when you accelerate at a constant rate). The thermometer can’t tell if it’s next to a black hole or if it’s accelerating. Could be wrong though, but I vaguely remember something along these lines.
I don’t see anything incorrect in what you say. (Sounds to me like a direct consequence of the equivalence principle, although I’m no GR expert.) But I’m assuming away the possibility of rogue black holes in this hypothetical, since I’m wondering whether a sufficiently sensitive sensor could detect its own acceleration even inside an otherwise empty universe (or at least without reference to the rest of the cosmos).