The speed prior still delegates to better search algorithms though. For example, suppose that someone is able to fill in a 1000 bit program using only 2^500 steps of local search. Then the local search algorithm has speed prior complexity 500 bits, so will beat the object-level program. And the prior we’d end up using is basically “2x longer = 2 more bits” instead of “2x longer = 1 more bit,” i.e. we end up caring more about speed because we delegated.
The actual limit on how much you care about speed is given by whatever search algorithms work best. I think it’s likely possible to “expose” what is going on to the outer optimizer (so that it finds a hypothesis like “This local search algorithm is good” and then uses it to find an object-level program, rather than directly finding a program that bundles both of them together). But I’d guess intuitively that it’s just not even meaningful to talk about the “simplest” programs or any prior that cares less about speed than the optimal search algorithm.
The speed prior still delegates to better search algorithms though. For example, suppose that someone is able to fill in a 1000 bit program using only 2^500 steps of local search. Then the local search algorithm has speed prior complexity 500 bits, so will beat the object-level program. And the prior we’d end up using is basically “2x longer = 2 more bits” instead of “2x longer = 1 more bit,” i.e. we end up caring more about speed because we delegated.
The actual limit on how much you care about speed is given by whatever search algorithms work best. I think it’s likely possible to “expose” what is going on to the outer optimizer (so that it finds a hypothesis like “This local search algorithm is good” and then uses it to find an object-level program, rather than directly finding a program that bundles both of them together). But I’d guess intuitively that it’s just not even meaningful to talk about the “simplest” programs or any prior that cares less about speed than the optimal search algorithm.