Conditional probability should be reflected if given enough data points. When you introduce human labeling into the equation, you are adding another uncertainty about the accuracy of the human doing the labeling, regardless whether the inaccuracy came from his own false sense of conditional independence. Usually human labeling don’t directly take into account of any conditional probability to not mess with the conditionals that exist within the data set. That’s why the more data the better, which also means the more labelers you have the less dependent you are on the inaccuracy of any individual human.
Conditional probability should be reflected if given enough data points. When you introduce human labeling into the equation, you are adding another uncertainty about the accuracy of the human doing the labeling, regardless whether the inaccuracy came from his own false sense of conditional independence. Usually human labeling don’t directly take into account of any conditional probability to not mess with the conditionals that exist within the data set. That’s why the more data the better, which also means the more labelers you have the less dependent you are on the inaccuracy of any individual human.