This is at best weakly related to the statistics of error in a communications channel. Here, simulations are often used to run trillions of trials to simulate (monte carlo calculate) the conditions to get bit error rates (BER) of 10^-7, 10^-8, and so on. As an engineer more familiar with the physical layer (transistor amplifiers, thermal noise in channels, scattering of RF etc), I know that the CONDITIONS for these monte carlo calculations to mean something in the real circuits are complex and not as common as the new PhD doing the calculation thinks they are. Further, the lower the BER calculated, the more likely something else has come along to bite you on the arse and raise the actual error rate in an actual circuit. STILL, in engineering presentation after presentation, people put these numbers up and other people nod gravely when they see them.
Amazingly, I”m finding the feeling of the post but in error rates which are gigantic compared to the probabilities discussed in the article. We get wiggly when a 1 has 6 zeros in front of it, you are using exponential notation to avoid writing much longer strings of zeros.
Maybe the “great filter” that prevents us seeing a universe filled with at least a few other intelligent species is that finally, one of the big physics experiments large smart civilizations build finally does destroy the local solar system. Maybe we should ban successors to the Large Hadron Collider until we are ensconced in at least one other solar system.
This is at best weakly related to the statistics of error in a communications channel. Here, simulations are often used to run trillions of trials to simulate (monte carlo calculate) the conditions to get bit error rates (BER) of 10^-7, 10^-8, and so on. As an engineer more familiar with the physical layer (transistor amplifiers, thermal noise in channels, scattering of RF etc), I know that the CONDITIONS for these monte carlo calculations to mean something in the real circuits are complex and not as common as the new PhD doing the calculation thinks they are. Further, the lower the BER calculated, the more likely something else has come along to bite you on the arse and raise the actual error rate in an actual circuit. STILL, in engineering presentation after presentation, people put these numbers up and other people nod gravely when they see them.
Amazingly, I”m finding the feeling of the post but in error rates which are gigantic compared to the probabilities discussed in the article. We get wiggly when a 1 has 6 zeros in front of it, you are using exponential notation to avoid writing much longer strings of zeros.
Maybe the “great filter” that prevents us seeing a universe filled with at least a few other intelligent species is that finally, one of the big physics experiments large smart civilizations build finally does destroy the local solar system. Maybe we should ban successors to the Large Hadron Collider until we are ensconced in at least one other solar system.