I continue to endorse this categorization of threat models and the consensus threat model. I often refer people to this post and use the “SG + GMG → MAPS” framing in my alignment overview talks. I remain uncertain about the likelihood of the deceptive alignment part of the threat model (in particular the requisite level of goal-directedness) arising in the LLM paradigm, relative to other mechanisms for AI risk.
In terms of adding new threat models to the categorization, the main one that comes to mind is Deep Deceptiveness (let’s call it Soares2), which I would summarize as “non-deceptiveness is anti-natural / hard to disentangle from general capabilities”. I would probably put this under “SG → MAPS”, assuming an irreducible kind of specification gaming where it’s very difficult (or impossible) to distinguish deceptiveness from non-deceptiveness (including through feedback on the model’s reasoning process). Though it could also be GMG, where the “non-deceptiveness” concept is incoherent and thus very difficult to generalize well.
I continue to endorse this categorization of threat models and the consensus threat model. I often refer people to this post and use the “SG + GMG → MAPS” framing in my alignment overview talks. I remain uncertain about the likelihood of the deceptive alignment part of the threat model (in particular the requisite level of goal-directedness) arising in the LLM paradigm, relative to other mechanisms for AI risk.
In terms of adding new threat models to the categorization, the main one that comes to mind is Deep Deceptiveness (let’s call it Soares2), which I would summarize as “non-deceptiveness is anti-natural / hard to disentangle from general capabilities”. I would probably put this under “SG → MAPS”, assuming an irreducible kind of specification gaming where it’s very difficult (or impossible) to distinguish deceptiveness from non-deceptiveness (including through feedback on the model’s reasoning process). Though it could also be GMG, where the “non-deceptiveness” concept is incoherent and thus very difficult to generalize well.