1) In the web interface, the parameter “Hardware adoption delay” is:
Meaning: Years between a chip design and its commercial release.
Best guess value: 1
Justification for best guess value: Discussed here. The conservative value of 2.5 years corresponds to an estimate of the time needed to make a new fab. The aggressive value (no delay) corresponds to fabless improvements in chip design that can be printed with existing production lines with ~no delay.
Is there another parameter for the delay (after the commercial release) to produce the hundreds of thousands of chips and build a supercomputer using them? (With maybe an aggressive value for just “refurnishing” an existing supercomputer or finishing a supercomputer just waiting for the chips)
2) Do you think that in a scenario with quick large gains in hardware efficiency, the delay for building a new chip fab could be significantly larger than the current estimate because of the need to also build new factories for the machines that will be used in the new chip fab? (e.g. ASMI could also need to build factories, not just TSMC)
3) Do you think that these parameters/adjustments would significantly change the relative impact on the takeoff of the “hardware overhang” when compared to the “software overhang”? (e.g. maybe making hardware overhang even less important for the speed of the takeoff)
Is there another parameter for the delay (after the commercial release) to produce the hundreds of thousands of chips and build a supercomputer using them?
There’s no additional parameter, but once the delay is over it still takes months or years before enough copies of the new chip is manufactured for the new chip to be a significant fraction of total global FLOP/s.
2) Do you think that in a scenario with quick large gains in hardware efficiency, the delay for building a new chip fab could be significantly larger than the current estimate because of the need to also build new factories for the machines that will be used in the new chip fab? (e.g. ASMI could also need to build factories, not just TSMC)
I agree with that. The 1 year delay was averaging across improvements that do and don’t require new fabs to be built.
3) Do you think that these parameters/adjustments would significantly change the relative impact on the takeoff of the “hardware overhang” when compared to the “software overhang”? (e.g. maybe making hardware overhang even less important for the speed of the takeoff)
Yep, additional delays would raise the relative importance of software compared to hardware.
1) In the web interface, the parameter “Hardware adoption delay” is:
Is there another parameter for the delay (after the commercial release) to produce the hundreds of thousands of chips and build a supercomputer using them?
(With maybe an aggressive value for just “refurnishing” an existing supercomputer or finishing a supercomputer just waiting for the chips)
2) Do you think that in a scenario with quick large gains in hardware efficiency, the delay for building a new chip fab could be significantly larger than the current estimate because of the need to also build new factories for the machines that will be used in the new chip fab? (e.g. ASMI could also need to build factories, not just TSMC)
3) Do you think that these parameters/adjustments would significantly change the relative impact on the takeoff of the “hardware overhang” when compared to the “software overhang”? (e.g. maybe making hardware overhang even less important for the speed of the takeoff)
Good questions!
There’s no additional parameter, but once the delay is over it still takes months or years before enough copies of the new chip is manufactured for the new chip to be a significant fraction of total global FLOP/s.
I agree with that. The 1 year delay was averaging across improvements that do and don’t require new fabs to be built.
Yep, additional delays would raise the relative importance of software compared to hardware.