Before being told anything, you should estimate a 2⁄3 chance that it’s Monday (not a 75% chance). There are three possibilities: heads/Monday, tails/Monday, and tails/Tuesday, all of which are equally likely.
I disagree that these situations are equally likely. We can understand it better by taking the extreme example. I will be much more surprised to hear that the coin was tails and that we are now at day #500,000, then that the coin was heads and that it is the first day. So obviously these two situations do not seem equally likely to me. And in particular, it seems equally likely to me that the coin was or will be heads, and that it was or will be tails. Going back to the non-extreme form, this directly implies that it seems half as likely to me that it is Monday and that the coin will be tails, as it is that it is Monday and that the coin will be heads. This results in my estimate of a 75% chance that it is Monday.
Because tails results in two awakenings, and you are calculating probability per awakening, that boosts the probability of tails, so it would be incorrect to put 50% on heads/Monday and 25% on tails/Monday. Tails/Monday is not half as likely as heads/Monday; it is equally likely.
I am not calculating “probability per awakening”, but calculating in the way indicated above, which does indeed make Tails/Monday half as likely as heads/Monday.
Only in the scenario where you were woken up either on Monday or Tuesday, but not both, would the probability of tails/Monday be 25%.
I am not asking about the probability that the situation as a whole will somewhere or other contain tails/Monday; this has a probability of 50%, just like the corresponding claim about heads/Monday. I am being asked in a concrete situation, “do you think it is Monday?” And I am less sure it is Monday if the coin is going to be tails, because in that situation I will not be able to distinguish my situation from Tuesday. And this is surely the case even when I am woken up both on Monday and Tuesday. It will just happen twice that I am less sure it is Monday.
And based on the above reasoning, being told that it is Monday does indeed lead me to expect that the coin will land heads, with a probability of 2⁄3.
We can understand it better by taking the extreme example. I will be much more surprised to hear that the coin was tails and that we are now at day #500,000, then that the coin was heads and that it is the first day.
You should not be more surprised in that situation. The more days there are, the more that the extra tails awakenings push down the probability of heads. With 500000 awakenings, the probability gets pushed down by a lot. Now heads is 1⁄500001 per-awakening probability, same as tails-day-1 and tails-day-500000
You are claiming that if I will be wake up 500,000 times if the coin lands tails, I should be virtually certain a priori that the coin will land tails. I am not; I would not be surprised at all if it landed heads. In fact, as I have been saying, the setup does not make me expect tails in any way. So at the start the probability remains 50% heads, 50% tails.
I do not. I mean reporting my opinion when someone asks, “Do you think the coin landed, heads, or tails?” I will truthfully respond that I have no idea. The fact that I would be woken up multiple times if it landed tails, did not make it any harder for the coin to land heads.
I’d recommend distinguishing between the probability that the coin landed heads (which happens exactly once), and the probability that, if you were to plan to peak you would see heads (which would happen on average 250,000 times).
The problem is that you are counting frequencies, and I am not. It is true that if you run the experiment many times, my estimate will change, from the very moment that I know that the experiment will be run many times.
But if we are going to run the experiment only once, then even if I plan to peek, I would expect with 50% probability to see heads. That does not mean “per awakening” or any other method of counting. It means that if I saw heads, I would say, “Not surprising; that had a 50% chance of happening.” I would not say, “What an incredible coincidence!!!!”
I disagree that these situations are equally likely. We can understand it better by taking the extreme example. I will be much more surprised to hear that the coin was tails and that we are now at day #500,000, then that the coin was heads and that it is the first day. So obviously these two situations do not seem equally likely to me. And in particular, it seems equally likely to me that the coin was or will be heads, and that it was or will be tails. Going back to the non-extreme form, this directly implies that it seems half as likely to me that it is Monday and that the coin will be tails, as it is that it is Monday and that the coin will be heads. This results in my estimate of a 75% chance that it is Monday.
I am not calculating “probability per awakening”, but calculating in the way indicated above, which does indeed make Tails/Monday half as likely as heads/Monday.
I am not asking about the probability that the situation as a whole will somewhere or other contain tails/Monday; this has a probability of 50%, just like the corresponding claim about heads/Monday. I am being asked in a concrete situation, “do you think it is Monday?” And I am less sure it is Monday if the coin is going to be tails, because in that situation I will not be able to distinguish my situation from Tuesday. And this is surely the case even when I am woken up both on Monday and Tuesday. It will just happen twice that I am less sure it is Monday.
And based on the above reasoning, being told that it is Monday does indeed lead me to expect that the coin will land heads, with a probability of 2⁄3.
You should not be more surprised in that situation. The more days there are, the more that the extra tails awakenings push down the probability of heads. With 500000 awakenings, the probability gets pushed down by a lot. Now heads is 1⁄500001 per-awakening probability, same as tails-day-1 and tails-day-500000
You are claiming that if I will be wake up 500,000 times if the coin lands tails, I should be virtually certain a priori that the coin will land tails. I am not; I would not be surprised at all if it landed heads. In fact, as I have been saying, the setup does not make me expect tails in any way. So at the start the probability remains 50% heads, 50% tails.
Yes, I am (assuming you mean per-awakening certainty).
I do not. I mean reporting my opinion when someone asks, “Do you think the coin landed, heads, or tails?” I will truthfully respond that I have no idea. The fact that I would be woken up multiple times if it landed tails, did not make it any harder for the coin to land heads.
I’d recommend distinguishing between the probability that the coin landed heads (which happens exactly once), and the probability that, if you were to plan to peak you would see heads (which would happen on average 250,000 times).
The problem is that you are counting frequencies, and I am not. It is true that if you run the experiment many times, my estimate will change, from the very moment that I know that the experiment will be run many times.
But if we are going to run the experiment only once, then even if I plan to peek, I would expect with 50% probability to see heads. That does not mean “per awakening” or any other method of counting. It means that if I saw heads, I would say, “Not surprising; that had a 50% chance of happening.” I would not say, “What an incredible coincidence!!!!”