you are missing the step where I am transforming arbitrary distribution to U(0, 1)
medium confident in this explanation: Because the square of random variables from the same distributions follows a gamma distribution, and it’s easier to see violations from a gamma than from a uniform, If the majority of your predictions are from a weird distributions then you are correct, but if they are mostly from normal or unimodal ones, then I am right. I agree that my solution is a hack that would make no statistician proud :)
Edit: Intuition pump, a T(0, 1, 100) obviously looks very normal, so transforming to U(0,1) and then to N(0, 1) will create basically the same distribution, the square of a bunch of normal is Chi^2, so the Chi^2 is the best distribution for detecting violations, obviously there is a point where this approximation sucks and U(0, 1) still works
If you think 2 data points are sufficient to update your methodology to 3 s.f. of precision I don’t know what to tell you. I think if I have 2 data point and one of them is 0.99 then it’s pretty clear I should make my intervals wider, but how much wider is still very uncertain with very little data. (It’s also not clear if I should be making my intervals wider or changing my mean too)
I don’t know what s.f is, but the interval around 1.73 is obviously huge, with 5-1-0 data points it’s quite narrow if your predictions are drawn from N(1, 1.73), that is what my next post will be about. There might also be a smart way to do this using the Uniform, but I would be surprised if it’s dispersion is smaller than a chi^2 distribution :)
(changing the mean is cheating, we are talking about calibration, so you can only change your dispersion)
you are missing the step where I am transforming arbitrary distribution to U(0, 1)
medium confident in this explanation: Because the square of random variables from the same distributions follows a gamma distribution, and it’s easier to see violations from a gamma than from a uniform, If the majority of your predictions are from a weird distributions then you are correct, but if they are mostly from normal or unimodal ones, then I am right. I agree that my solution is a hack that would make no statistician proud :)
Edit: Intuition pump, a T(0, 1, 100) obviously looks very normal, so transforming to U(0,1) and then to N(0, 1) will create basically the same distribution, the square of a bunch of normal is Chi^2, so the Chi^2 is the best distribution for detecting violations, obviously there is a point where this approximation sucks and U(0, 1) still works
I am absolutely not missing that step. I am suggesting that should be the only step.
(I don’t agree with your intuitions in your “explanation” but I’ll let someone else deconstruct that if they want)
Hard disagree, From two data points I calculate that my future intervals should be 1.73 times wider, converting these two data points to U(0,1) I get
[0.99, 0.25]
How should I update my future predictions now?
If you think 2 data points are sufficient to update your methodology to 3 s.f. of precision I don’t know what to tell you. I think if I have 2 data point and one of them is 0.99 then it’s pretty clear I should make my intervals wider, but how much wider is still very uncertain with very little data. (It’s also not clear if I should be making my intervals wider or changing my mean too)
I don’t know what s.f is, but the interval around 1.73 is obviously huge, with 5-1-0 data points it’s quite narrow if your predictions are drawn from N(1, 1.73), that is what my next post will be about. There might also be a smart way to do this using the Uniform, but I would be surprised if it’s dispersion is smaller than a chi^2 distribution :) (changing the mean is cheating, we are talking about calibration, so you can only change your dispersion)