If you think 2 data points are sufficient to update your methodology to 3 s.f. of precision I don’t know what to tell you. I think if I have 2 data point and one of them is 0.99 then it’s pretty clear I should make my intervals wider, but how much wider is still very uncertain with very little data. (It’s also not clear if I should be making my intervals wider or changing my mean too)
I don’t know what s.f is, but the interval around 1.73 is obviously huge, with 5-1-0 data points it’s quite narrow if your predictions are drawn from N(1, 1.73), that is what my next post will be about. There might also be a smart way to do this using the Uniform, but I would be surprised if it’s dispersion is smaller than a chi^2 distribution :)
(changing the mean is cheating, we are talking about calibration, so you can only change your dispersion)
Hard disagree, From two data points I calculate that my future intervals should be 1.73 times wider, converting these two data points to U(0,1) I get
[0.99, 0.25]
How should I update my future predictions now?
If you think 2 data points are sufficient to update your methodology to 3 s.f. of precision I don’t know what to tell you. I think if I have 2 data point and one of them is 0.99 then it’s pretty clear I should make my intervals wider, but how much wider is still very uncertain with very little data. (It’s also not clear if I should be making my intervals wider or changing my mean too)
I don’t know what s.f is, but the interval around 1.73 is obviously huge, with 5-1-0 data points it’s quite narrow if your predictions are drawn from N(1, 1.73), that is what my next post will be about. There might also be a smart way to do this using the Uniform, but I would be surprised if it’s dispersion is smaller than a chi^2 distribution :) (changing the mean is cheating, we are talking about calibration, so you can only change your dispersion)