If you had the hypergraph theory plus the extra conditions that make the predictions fit our universe, that would be useful.
That’s what I meant by the part of my previous comment that you quoted.
But, aside from the physics, they’re also exploring the more general mathematics/computation of ‘multiway systems’ too. They’re the pioneers of the math and I think they’re effectively ‘nerd sniping’ themselves with interesting math/computer-science and that’s become something like a ‘parallel’ effort from the focus on deriving/finding a GUT that unifies (our specific) QM and GR.
They’ve found specific “extra conditions” that identify specific ‘hypergraphs’ (really the multiway system that generates a ‘multiway’ set/tree/whatever of hypergraph evolution) and those specific hypergraphs match up to, e.g. General Relativity (in at least some ways).
In the second podcast video with Gorard, he describes ‘experiments’ they’ve done with things they think might be equivalent to the particles in the Standard Model but it seems like they weren’t trying to (at that point), ‘derive’ them from ‘scratch’. That is apparently something they want to do, but it seems (very) plausible that reaching ‘particles’ from the Big Bang, and simulating that on a computer, might be its own future mega-project.
It seems to me like Wolfram’s project isn’t doing anything that all of the other GUTs or quantum-gravity theories/formalisms aren’t doing too. They’re all trying to find a more fundamental theorem from which the Standard Model and General Relativity can be derived, i.e. ‘emerge’ automatically.
AFAIK, ‘string theory’, in the fully general sense of all similar theories, doesn’t itself constrain the number of dimensions of the universe. Why is Wolfram’s theory/model different?
If you are looking for the rules that prove X, Y, Z, and after finding them exclaim “behold, my theory predicts X, Y, Z”, all that it proves is that X, Y, Z are not fundamentally incompatible with your model (maybe because your model is compatible with almost everything).
It seems like even if the only thing they end up doing is finding a ‘compressed’ version of QM+GR that that would in fact be a monumental achievement? I don’t know why that wouldn’t also predictably imply other new predictions.
AFAIK, ‘string theory’, in the fully general sense of all similar theories, doesn’t itself constrain the number of dimensions of the universe. Why is Wolfram’s theory/model different?
I think I have heard people making similar objections against the string theory. I don’t know much about string theory to evaluate whether the objections are deserved. If they are, I would treat it as an argument against string theory, not as an argument if favor of Wolfram’s theory.
I don’t know why that wouldn’t also predictably imply other new predictions.
We are still talking about the potential of the new theory (possibly also string theory).
The original complaint is that the physics community does not take Wolfram’s ideas seriously. Some people seem to do, and they seem to promise amazing results soon. From my perspective, there are two options: if those amazing results are actually delivered and published (the actual proofs, not just a youtube video claiming that they could be done), the physics community will start paying attention. But if the amazing results never materialize (despite smart people working on the problem), then maybe it was all hype and no substance.
If there is tomorrow an equation proving theory of relativity from the first principles, and no one in academia pays attention to it, that would be the right moment to discuss the proof at Less Wrong.
I’ve now watched several videos, particularly a few with the ‘math lead’ of the Wolfram’s physics project, and I now do not think that the “physics community does not take Wolfram’s ideas seriously”. It seems like they do in fact have a good set of contributors and are making great progress (relative to expectations).
You’re absolutely right that it could be “all hype and no substance”, tho I don’t think that’s even a remote possibility beyond just physics. (The ‘math’ alone seems interesting, which is ‘more than enough’ IMO for any possible ‘math’ that someone might want to study/explore.)
A paper they’ve published (and one that’s available on the project’s website) about (some aspects of) relativity:
That’s what I meant by the part of my previous comment that you quoted.
But, aside from the physics, they’re also exploring the more general mathematics/computation of ‘multiway systems’ too. They’re the pioneers of the math and I think they’re effectively ‘nerd sniping’ themselves with interesting math/computer-science and that’s become something like a ‘parallel’ effort from the focus on deriving/finding a GUT that unifies (our specific) QM and GR.
They’ve found specific “extra conditions” that identify specific ‘hypergraphs’ (really the multiway system that generates a ‘multiway’ set/tree/whatever of hypergraph evolution) and those specific hypergraphs match up to, e.g. General Relativity (in at least some ways).
In the second podcast video with Gorard, he describes ‘experiments’ they’ve done with things they think might be equivalent to the particles in the Standard Model but it seems like they weren’t trying to (at that point), ‘derive’ them from ‘scratch’. That is apparently something they want to do, but it seems (very) plausible that reaching ‘particles’ from the Big Bang, and simulating that on a computer, might be its own future mega-project.
It seems to me like Wolfram’s project isn’t doing anything that all of the other GUTs or quantum-gravity theories/formalisms aren’t doing too. They’re all trying to find a more fundamental theorem from which the Standard Model and General Relativity can be derived, i.e. ‘emerge’ automatically.
AFAIK, ‘string theory’, in the fully general sense of all similar theories, doesn’t itself constrain the number of dimensions of the universe. Why is Wolfram’s theory/model different?
It seems like even if the only thing they end up doing is finding a ‘compressed’ version of QM+GR that that would in fact be a monumental achievement? I don’t know why that wouldn’t also predictably imply other new predictions.
I think I have heard people making similar objections against the string theory. I don’t know much about string theory to evaluate whether the objections are deserved. If they are, I would treat it as an argument against string theory, not as an argument if favor of Wolfram’s theory.
We are still talking about the potential of the new theory (possibly also string theory).
The original complaint is that the physics community does not take Wolfram’s ideas seriously. Some people seem to do, and they seem to promise amazing results soon. From my perspective, there are two options: if those amazing results are actually delivered and published (the actual proofs, not just a youtube video claiming that they could be done), the physics community will start paying attention. But if the amazing results never materialize (despite smart people working on the problem), then maybe it was all hype and no substance.
If there is tomorrow an equation proving theory of relativity from the first principles, and no one in academia pays attention to it, that would be the right moment to discuss the proof at Less Wrong.
I’ve now watched several videos, particularly a few with the ‘math lead’ of the Wolfram’s physics project, and I now do not think that the “physics community does not take Wolfram’s ideas seriously”. It seems like they do in fact have a good set of contributors and are making great progress (relative to expectations).
You’re absolutely right that it could be “all hype and no substance”, tho I don’t think that’s even a remote possibility beyond just physics. (The ‘math’ alone seems interesting, which is ‘more than enough’ IMO for any possible ‘math’ that someone might want to study/explore.)
A paper they’ve published (and one that’s available on the project’s website) about (some aspects of) relativity:
Some Relativistic and Gravitational Properties of the Wolfram Model [PDF]
(I haven’t read it myself yet.)