That’s called a limit). What’s special is not the “zero” but the “infinity”: you don’t talk about a value “infinity” (attempting to have one causes you to lose various other useful properties), but rather that as some input increases without bound, the output approaches zero.
“The limit of 1/x as x approaches infinity is zero.”
The concept of limits is a great way to look at this. A limit is a thing unto its own, a complex statement indicating, confirmed as much as is humanly possible.
Another notion is what Goedel brings to the table. His contribution of something being consistent or complete is relevant.
That’s called a limit). What’s special is not the “zero” but the “infinity”: you don’t talk about a value “infinity” (attempting to have one causes you to lose various other useful properties), but rather that as some input increases without bound, the output approaches zero.
“The limit of 1/x as x approaches infinity is zero.”
The concept of limits is a great way to look at this. A limit is a thing unto its own, a complex statement indicating, confirmed as much as is humanly possible.
Another notion is what Goedel brings to the table. His contribution of something being consistent or complete is relevant.