Interesting analysis. Have you tried doing an analysis on quantities other than % improvement? A 10% improvement from low accuracy is different from a 10% improvement at high accuracy. So for example, you could try doing a linear regression from small_to_medium_improvement, medium_accuracy → large_accuracy and look at the variance explained.
Edit: I tried linear regression on the chinchilla MMLU data, predicting the large model accuracy from the 3 smaller models’ accuracies, and only got 8% of variance explained, vs 7% of variance explained by only looking at the second largest model’s accuracy. So that’s consistent with the OP’s claim of unpredictability.
Edit2: MMLU performance for the smaller models is about chance level, so it’s not surprising that we can’t predict much from it. (The accuracies we’re looking at for these models are noise.)
Interesting analysis. Have you tried doing an analysis on quantities other than % improvement? A 10% improvement from low accuracy is different from a 10% improvement at high accuracy. So for example, you could try doing a linear regression from small_to_medium_improvement, medium_accuracy → large_accuracy and look at the variance explained.
Edit: I tried linear regression on the chinchilla MMLU data, predicting the large model accuracy from the 3 smaller models’ accuracies, and only got 8% of variance explained, vs 7% of variance explained by only looking at the second largest model’s accuracy. So that’s consistent with the OP’s claim of unpredictability.
Edit2: MMLU performance for the smaller models is about chance level, so it’s not surprising that we can’t predict much from it. (The accuracies we’re looking at for these models are noise.)