I think in-practice there are lots of situations where you can confidently create a kind of pocket-universe where you can actually consider hypotheses in a bayesian way.
Concrete example: Trying to figure out who voted a specific way on a LW post. You can condition pretty cleanly on vote-strength, and treat people’s votes as roughly independent, so if you have guesses on how different people are likely to vote, it’s pretty easy to create the odds ratios for basically all final karma + vote numbers and then make a final guess based on that.
It’s clear that there is some simplification going on here, by assigning static probabilities for people’s vote behavior, treating them as independent (though modeling some subset of independence wouldn’t be too hard), etc.. But overall I expect it to perform pretty well and to give you good answers.
(Note, I haven’t actually done this explicitly, but my guess is my brain is doing something pretty close to this when I do see vote numbers + karma numbers on a thread)
So I’m not sure how we distinguish what’s ruled out from what isn’t.
Well, it’s obvious that anything that claims to be better than the ideal bayesian update is clearly ruled out. I.e. arguments that by writing really good explanations of a phenomenon you can get to a perfect understanding. Or arguments that you can derive the rules of physics from first principles.
There are also lots of hypotheticals where you do get to just use Bayes properly and then it provides very strong bounds on the ideal approach. There are a good number of implicit models behind lots of standard statistics models that when put into a bayesian framework give rise to a more general formulation. See the Wikipedia article for “Bayesian interpretations of regression” for a number of examples.
Of course, in reality it is always unclear whether the assumptions that give rise to various regression methods actually hold, but I think you can totally say things like “given these assumption, the bayesian solution is the ideal one, and you can’t perform better than this, and if you put in the computational effort you will actually achieve this performance”.
I think in-practice there are lots of situations where you can confidently create a kind of pocket-universe where you can actually consider hypotheses in a bayesian way.
Concrete example: Trying to figure out who voted a specific way on a LW post. You can condition pretty cleanly on vote-strength, and treat people’s votes as roughly independent, so if you have guesses on how different people are likely to vote, it’s pretty easy to create the odds ratios for basically all final karma + vote numbers and then make a final guess based on that.
It’s clear that there is some simplification going on here, by assigning static probabilities for people’s vote behavior, treating them as independent (though modeling some subset of independence wouldn’t be too hard), etc.. But overall I expect it to perform pretty well and to give you good answers.
(Note, I haven’t actually done this explicitly, but my guess is my brain is doing something pretty close to this when I do see vote numbers + karma numbers on a thread)
Well, it’s obvious that anything that claims to be better than the ideal bayesian update is clearly ruled out. I.e. arguments that by writing really good explanations of a phenomenon you can get to a perfect understanding. Or arguments that you can derive the rules of physics from first principles.
There are also lots of hypotheticals where you do get to just use Bayes properly and then it provides very strong bounds on the ideal approach. There are a good number of implicit models behind lots of standard statistics models that when put into a bayesian framework give rise to a more general formulation. See the Wikipedia article for “Bayesian interpretations of regression” for a number of examples.
Of course, in reality it is always unclear whether the assumptions that give rise to various regression methods actually hold, but I think you can totally say things like “given these assumption, the bayesian solution is the ideal one, and you can’t perform better than this, and if you put in the computational effort you will actually achieve this performance”.