What sets the minimal clock rate? Increasing wire resistance and reducing the number of ion channels and pumps proportionally should just work. (ignoring leakage).
It is certainly tempting to run at higher clock speeds (serial thinking speed is a nice feature) but if miniaturization can be done and then clock speeds must be limited for thermal reasons why can’t we just do that?
That aside, is miniaturization out of the question (IE:logic won’t shrink)? Is there a lower limit on number of charge carriers for synapses to work?
Synapses are around 1µm³ which seems big enough to shrink down a bit without weird quantum effects ruining everything. Humans have certainly made smaller transistors or memristors for that matter. Perhaps some of the learning functionality needs to be stripped but we do inference on models all the time without any continuous learning and that’s still quite useful.
Evolutionary arms races: ie the need to think quickly to avoid becoming prey, think fast enough to catch prey, etc.
That aside, is miniaturization out of the question (IE:logic won’t shrink)? Is there a lower limit on number of charge carriers for synapses to work?
The prime overall size constraint seems may be surface/volume ratios and temp as we already discussed, but yes synapses are already pretty minimal for what they do (they are analog multipliers and storage devices).
Synapses are equivalent to entire multipliers + storage devices + some extra functions, far more than transistors.
What sets the minimal clock rate? Increasing wire resistance and reducing the number of ion channels and pumps proportionally should just work. (ignoring leakage).
It is certainly tempting to run at higher clock speeds (serial thinking speed is a nice feature) but if miniaturization can be done and then clock speeds must be limited for thermal reasons why can’t we just do that?
That aside, is miniaturization out of the question (IE:logic won’t shrink)? Is there a lower limit on number of charge carriers for synapses to work?
Synapses are around 1µm³ which seems big enough to shrink down a bit without weird quantum effects ruining everything. Humans have certainly made smaller transistors or memristors for that matter. Perhaps some of the learning functionality needs to be stripped but we do inference on models all the time without any continuous learning and that’s still quite useful.
Signal propagation is faster in larger axons.
Evolutionary arms races: ie the need to think quickly to avoid becoming prey, think fast enough to catch prey, etc.
The prime overall size constraint seems may be surface/volume ratios and temp as we already discussed, but yes synapses are already pretty minimal for what they do (they are analog multipliers and storage devices).
Synapses are equivalent to entire multipliers + storage devices + some extra functions, far more than transistors.
you might find this post interesting