Nah, I don’t think that’s super relevant here. All the degrees of freedom of the gas are coupled to each other, so the biggest source of chaos can scramble everything just fine.
Hmm, I don’t super buy this. For example, this model predicts no standing wave would survive for multiple seconds, but this is trivial to disprove by experiment. So clearly there are degrees of freedom that remain coupled. No waves of substantial magnitude are present in the initialization here, but your argument clearly implies a decay rate for any kind of wave that is too substantial.
Yeah, good point (the examples, not necessarily any jargon-ful explanation of them). Sound waves, or even better, slow-moving vortices, or also better and different, diffusion of a cloud of one gas through a room filled with a different gas, show that you don’t get total mixing of a room on one-second timescale.
I think most likely, I’ve mangled something in the process of extrapolating a paper on a tiny toy model of a few hundred gas atoms to the meter scale.
Hmm, I don’t super buy this. For example, this model predicts no standing wave would survive for multiple seconds, but this is trivial to disprove by experiment. So clearly there are degrees of freedom that remain coupled. No waves of substantial magnitude are present in the initialization here, but your argument clearly implies a decay rate for any kind of wave that is too substantial.
Yeah, good point (the examples, not necessarily any jargon-ful explanation of them). Sound waves, or even better, slow-moving vortices, or also better and different, diffusion of a cloud of one gas through a room filled with a different gas, show that you don’t get total mixing of a room on one-second timescale.
I think most likely, I’ve mangled something in the process of extrapolating a paper on a tiny toy model of a few hundred gas atoms to the meter scale.