Are you familiar with Kelly betting? The point of maximizing log expectation instead of pure expectation isn’t because happiness grows on a logarithmic scale or whatever, it’s for the sake of maximizing long-term expected value. This kills off making bets where “0” is on the table (as log(0) is minus infinity); whether or not that’s appropriate is still an interesting topic for discussion because, as you mentioned, x-risks exist anyway
it’s for the sake of maximizing long-term expected value.
Kelly betting does not maximize long-term expected value in all situations. For example, if some bets are offered only once (or even a finite amount), then you can get better long-term expected utility by sometimes accepting bets with a potential “0”-Utility outcome.
Heard of it, but this particular application is new. There’s a difference, though, between “this formula can be a useful strategy to get more value” and “this formula accurately reflects my true reflectively endorsed value function.”
Are you familiar with Kelly betting? The point of maximizing log expectation instead of pure expectation isn’t because happiness grows on a logarithmic scale or whatever, it’s for the sake of maximizing long-term expected value. This kills off making bets where “0” is on the table (as log(0) is minus infinity); whether or not that’s appropriate is still an interesting topic for discussion because, as you mentioned, x-risks exist anyway
Kelly betting does not maximize long-term expected value in all situations. For example, if some bets are offered only once (or even a finite amount), then you can get better long-term expected utility by sometimes accepting bets with a potential “0”-Utility outcome.
Heard of it, but this particular application is new. There’s a difference, though, between “this formula can be a useful strategy to get more value” and “this formula accurately reflects my true reflectively endorsed value function.”