Cantor who first did the first work on infinite cardinals and ordinals seemed to have a somewhat mystic point of view some times. He thought his ideas about transfinite numbers were communicated to him from god, whom he also identified with the absolute infinite (the cardinality of the cardinals which is too big to itself be a cardinal). This was during the 19th century so quite recently.
I’d say that much mysticism about foundational issues like what numbers really are, or what these possible infinities actually mean, have been abandoned by mathematicians in favour of actually doing real mathematics. We also have quite good formal foundations in terms of ZF and formal logic nowadays, so discussions like that do not help in the process of doing mathematics (unlike, say, discussions about the nature of real numbers before we had them formalised in terms of Cauchy sequences or Dedekind cuts).
Cantor who first did the first work on infinite cardinals and ordinals seemed to have a somewhat mystic point of view some times. He thought his ideas about transfinite numbers were communicated to him from god, whom he also identified with the absolute infinite (the cardinality of the cardinals which is too big to itself be a cardinal). This was during the 19th century so quite recently.
I’d say that much mysticism about foundational issues like what numbers really are, or what these possible infinities actually mean, have been abandoned by mathematicians in favour of actually doing real mathematics. We also have quite good formal foundations in terms of ZF and formal logic nowadays, so discussions like that do not help in the process of doing mathematics (unlike, say, discussions about the nature of real numbers before we had them formalised in terms of Cauchy sequences or Dedekind cuts).