The omitted information seems very relevant. An EDT agent decides to do the action maximizing
Sum P(outcomes | action) U(outcomes, action).
With omitted information, the agent can’t compute the P() expressions and so their decision is undetermined. It should already be obvious from the problem setup that something is wrong here: equality of Omega and Omicron’s numbers is part of the outcomes, and so arguing for an EDT agent to condition on that is suspicious to say the least.
The claim is not that the EDT agent doesn’t know the mechanism that fills in the gap (namely, Omega’s strategy for deciding whether to make the numbers coincide). The claim is that it doesn’t matter what mechanism fills the gap, because for any particular mechanism EDT’s answer would be the same. Thus, we can figure out what EDT does across the entire class of fully-formal decision problems consistent with this informal problem description without worrying about the gaps.
The omitted information seems very relevant. An EDT agent decides to do the action maximizing
Sum P(outcomes | action) U(outcomes, action).
With omitted information, the agent can’t compute the P() expressions and so their decision is undetermined. It should already be obvious from the problem setup that something is wrong here: equality of Omega and Omicron’s numbers is part of the outcomes, and so arguing for an EDT agent to condition on that is suspicious to say the least.
The claim is not that the EDT agent doesn’t know the mechanism that fills in the gap (namely, Omega’s strategy for deciding whether to make the numbers coincide). The claim is that it doesn’t matter what mechanism fills the gap, because for any particular mechanism EDT’s answer would be the same. Thus, we can figure out what EDT does across the entire class of fully-formal decision problems consistent with this informal problem description without worrying about the gaps.