If this was true, how could we tell? In other words, is this a testable hypothesis?
This. Physics runs on falsifiable predictions. If ‘consciousness can affect quantum outcomes’ is any more true than the classic ‘there is an invisible dragon in my garage’, then discovering that fact would seem easy from an experimentalist standpoint. Sources of quantum randomness (e.g. weak source+detector) are readily available, so any claimant who thinks they can predict or affect their outcomes could probably be tested initially for a few 100$.
General remark:
One way this could turn out to be true is if it’s a priori more likely that there are special, nonrandom portions of the quantum multiverse we’re being sampled from. For example, if we had a priori reasons for expecting that we’re in a simulation by some superintelligence trying to calculate the most likely distribution of superintelligences in foreign universes for acausal trade reasons, then we would have a priori reasons for expecting to find ourselves in Everett branches in which our civilization ends up producing some kind of superintelligence – i.e., that it’s in our logical past that our civilization ends up building some sort of superintelligence.
It is not clear to me that this would result in a lower Kolmogorov complexity at all. Such an algorithm could of course use a pseudo-random number generator for the vast majority quantum events which do not affect p(ASI) (like the creation of CMB photons), but this is orthogonal to someone nudging the relevant quantum events towards ASI. For these relevant events, I am not sure that the description “just do whatever favors ASI” is actually shorter than just the sequence of events.
I mean, if we are simulated by a Turing Machine (which is equivalent to quantum events having a low Kolmogorov complexity), then a TM which just implements the true laws of physics (and cheats with a PNRG, not like the inhabitants would ever notice) is surely simpler than one which tries to optimize towards some distant outcome state.
As an analogy, think about the Kolmogorov complexity of a transcript of a very long game of chess. If both opponents are following a simple algorithm of “determine the allowed moves, then use a PRNG to pick one of them”, that should have a bound complexity. If both are chess AIs which want to win the game (i.e. optimize towards a certain state) and use a deterministic PRNG (lest we are incompressible), the size of your Turing Machine—which /is/ the Kolmogorov complexity—just explodes.
Of course, if your goal is to build a universe which invents ASI, do you really need QM at all? Sure, some algorithms run faster in-universe on a QC, but if you cared about efficiency, you would not use so many levels of abstraction in the first place.
Look at me rambling about universe-simulating TMs. Enough, enough.
It is not clear to me that this would result in a lower Kolmogorov complexity at all. Such an algorithm could of course use a pseudo-random number generator for the vast majority quantum events which do not affect p(ASI) (like the creation of CMB photons), but this is orthogonal to someone nudging the relevant quantum events towards ASI. For these relevant events, I am not sure that the description “just do whatever favors ASI” is actually shorter than just the sequence of events.
Hmm, I notice I may have been a bit unclear in my original post. When I’d said “pseudorandom”, I wasn’t referring to the use of a pseudo-random number generator instead of a true RNG. I was referring to the “transcript” of relevant quantum events only appearing random, without being “truly random”, because of the way in which they were generated (which I’m thinking of as being better described as “sampled from a space parameterizing the possible ways the world could be, conditional on humanity building superintelligence” rather than “close to truly random, or generated by a pseudo-random RNG, except with nudges toward ASI”.)
I mean, if we are simulated by a Turing Machine (which is equivalent to quantum events having a low Kolmogorov complexity), then a TM which just implements the true laws of physics (and cheats with a PNRG, not like the inhabitants would ever notice) is surely simpler than one which tries to optimize towards some distant outcome state.
As an analogy, think about the Kolmogorov complexity of a transcript of a very long game of chess. If both opponents are following a simple algorithm of “determine the allowed moves, then use a PRNG to pick one of them”, that should have a bound complexity. If both are chess AIs which want to win the game (i.e. optimize towards a certain state) and use a deterministic PRNG (lest we are incompressible), the size of your Turing Machine—which /is/ the Kolmogorov complexity—just explodes.
Wouldn’t this also serve as an argument against malign consequentialists in the Solomonoff prior, that may make it a priori more likely for us to end up in a world with particular outcomes optimized in their favor?
It is not clear to me that this would result in a lower Kolmogorov complexity at all.
[...]
Look at me rambling about universe-simulating TMs. Enough, enough.
To be clear, it’s also not clear to me that this would result in a lower K-complexity either. My main point is that (1) the null hypothesis of quantum events being independent of consciousness rests on assumptions (like assumptions about what the Solomonoff prior is like) that I think are actually pretty speculative, and that (2) there are speculative ways the Solomonoff prior could be in which our consciousness can influence quantum outcomes.
My goal here is not to make a positive case for consciousness affecting quantum outcomes, as much as it is to question the assumptions behind the case against the world working that way.
This. Physics runs on falsifiable predictions. If ‘consciousness can affect quantum outcomes’ is any more true than the classic ‘there is an invisible dragon in my garage’, then discovering that fact would seem easy from an experimentalist standpoint. Sources of quantum randomness (e.g. weak source+detector) are readily available, so any claimant who thinks they can predict or affect their outcomes could probably be tested initially for a few 100$.
Yes, I’m also bearish on consciousness affecting quantum outcomes in ways that are as overt and measurable in the way you’re gesturing at. The only thing I was arguing in this post is that the effect size of consciousness on quantum outcomes is maybe more than zero, as opposed to obviously exactly zero. I don’t think of myself as having made any arguments that the effect size should be non-negligible, although I also don’t think that possibility has been ruled out for non-neglible effect sizes lying somewhere between “completely indistinguishable from no influence at all” and “overt and measurable to the extent a proclaimed psychic could reproducibly affect quantum RNG outcomes”.
This. Physics runs on falsifiable predictions. If ‘consciousness can affect quantum outcomes’ is any more true than the classic ‘there is an invisible dragon in my garage’, then discovering that fact would seem easy from an experimentalist standpoint. Sources of quantum randomness (e.g. weak source+detector) are readily available, so any claimant who thinks they can predict or affect their outcomes could probably be tested initially for a few 100$.
General remark:
It is not clear to me that this would result in a lower Kolmogorov complexity at all. Such an algorithm could of course use a pseudo-random number generator for the vast majority quantum events which do not affect p(ASI) (like the creation of CMB photons), but this is orthogonal to someone nudging the relevant quantum events towards ASI. For these relevant events, I am not sure that the description “just do whatever favors ASI” is actually shorter than just the sequence of events.
I mean, if we are simulated by a Turing Machine (which is equivalent to quantum events having a low Kolmogorov complexity), then a TM which just implements the true laws of physics (and cheats with a PNRG, not like the inhabitants would ever notice) is surely simpler than one which tries to optimize towards some distant outcome state.
As an analogy, think about the Kolmogorov complexity of a transcript of a very long game of chess. If both opponents are following a simple algorithm of “determine the allowed moves, then use a PRNG to pick one of them”, that should have a bound complexity. If both are chess AIs which want to win the game (i.e. optimize towards a certain state) and use a deterministic PRNG (lest we are incompressible), the size of your Turing Machine—which /is/ the Kolmogorov complexity—just explodes.
Of course, if your goal is to build a universe which invents ASI, do you really need QM at all? Sure, some algorithms run faster in-universe on a QC, but if you cared about efficiency, you would not use so many levels of abstraction in the first place.
Look at me rambling about universe-simulating TMs. Enough, enough.
Hmm, I notice I may have been a bit unclear in my original post. When I’d said “pseudorandom”, I wasn’t referring to the use of a pseudo-random number generator instead of a true RNG. I was referring to the “transcript” of relevant quantum events only appearing random, without being “truly random”, because of the way in which they were generated (which I’m thinking of as being better described as “sampled from a space parameterizing the possible ways the world could be, conditional on humanity building superintelligence” rather than “close to truly random, or generated by a pseudo-random RNG, except with nudges toward ASI”.)
Wouldn’t this also serve as an argument against malign consequentialists in the Solomonoff prior, that may make it a priori more likely for us to end up in a world with particular outcomes optimized in their favor?
To be clear, it’s also not clear to me that this would result in a lower K-complexity either. My main point is that (1) the null hypothesis of quantum events being independent of consciousness rests on assumptions (like assumptions about what the Solomonoff prior is like) that I think are actually pretty speculative, and that (2) there are speculative ways the Solomonoff prior could be in which our consciousness can influence quantum outcomes.
My goal here is not to make a positive case for consciousness affecting quantum outcomes, as much as it is to question the assumptions behind the case against the world working that way.
Yes, I’m also bearish on consciousness affecting quantum outcomes in ways that are as overt and measurable in the way you’re gesturing at. The only thing I was arguing in this post is that the effect size of consciousness on quantum outcomes is maybe more than zero, as opposed to obviously exactly zero. I don’t think of myself as having made any arguments that the effect size should be non-negligible, although I also don’t think that possibility has been ruled out for non-neglible effect sizes lying somewhere between “completely indistinguishable from no influence at all” and “overt and measurable to the extent a proclaimed psychic could reproducibly affect quantum RNG outcomes”.