Keep in mind that the adversary was specifically trained against KataGo, whereas the performance against LeelaZero and ELF is basically zero-shot. It’s likely the case that an adversary trained against LeelaZero and ELF would also win consistently.
I’ve run LeelaZero and ELF and MiniGo (yet another independent AlphaZero replication in Go) by hand in particular test positions to see what their policy and value predictions are, and they all very massively misevaluate cyclic group situations just like KataGo. Perhaps by pure happenstance different bots could “accidentally” prefer different move patterns that make it harder or easier to form the attack patterns (indeed this is almost certainly something that should vary between bots as they do have different styles and preferences to some degree), but probably the bigger contributor to the difference is explicit optimization vs zero shot.
(As for whether, e.g. a transformer architecture would have less of an issue—I genuinely have no idea, I think it could go either way, nobody I know has tried it in Go. I think it’s at least easier to see why a convnet could be susceptible to this specific failure mode, but that doesn’t mean other architectures wouldn’t be too)
Keep in mind that the adversary was specifically trained against KataGo, whereas the performance against LeelaZero and ELF is basically zero-shot. It’s likely the case that an adversary trained against LeelaZero and ELF would also win consistently.
I’ve run LeelaZero and ELF and MiniGo (yet another independent AlphaZero replication in Go) by hand in particular test positions to see what their policy and value predictions are, and they all very massively misevaluate cyclic group situations just like KataGo. Perhaps by pure happenstance different bots could “accidentally” prefer different move patterns that make it harder or easier to form the attack patterns (indeed this is almost certainly something that should vary between bots as they do have different styles and preferences to some degree), but probably the bigger contributor to the difference is explicit optimization vs zero shot.
So all signs point to this misgeneralization being general to AlphaZero with convnets, not one particular bot. In another post here https://www.lesswrong.com/posts/Es6cinTyuTq3YAcoK/there-are-probably-no-superhuman-go-ais-strong-human-players?commentId=gAEovdd5iGsfZ48H3 I explain why I think it’s intuitive how and why a convnet would learn the an incorrect algorithm first and then get stuck on it given the data.
(As for whether, e.g. a transformer architecture would have less of an issue—I genuinely have no idea, I think it could go either way, nobody I know has tried it in Go. I think it’s at least easier to see why a convnet could be susceptible to this specific failure mode, but that doesn’t mean other architectures wouldn’t be too)