My point is that there have to be straight up impossibilities in there. For example, if you had a constraint to only use 3 atoms to build a molecule, there are only so many stable combinations. When one considers for example nanomachines it is reasonable to imagine that there is a minimum physical size that can embed a given program, and that size also puts limitations on effectiveness, lifetime, and sensory abilities. Like e.g. you lose resolution on movement because the smaller you are the stronger the effect of Brownian forces, stuff like that, at the crossroads between complexity theory and thermodynamics.
My point is that there have to be straight up impossibilities in there. For example, if you had a constraint to only use 3 atoms to build a molecule, there are only so many stable combinations. When one considers for example nanomachines it is reasonable to imagine that there is a minimum physical size that can embed a given program, and that size also puts limitations on effectiveness, lifetime, and sensory abilities. Like e.g. you lose resolution on movement because the smaller you are the stronger the effect of Brownian forces, stuff like that, at the crossroads between complexity theory and thermodynamics.
I see, thanks for clarifying.