You’re ignoring heavily diminishing returns from additional data points.
Although the win (expressed as precision of an effect size estimate) from upping the sample size n probably only goes as about √n, I think that’s enough for gwern’s quantitative point to go through. An RCT with a sample size of e.g. 400 would still be 10 times better than 4 self-experiments by this metric. (And this is leaving aside gwern’s point about methodological quality. RCTs punch above their weight because random assignment allows direct causal inference.)
What steven0461 said. Square rooting both sides of the Bienaymé formula gives the standard deviation of the mean going as 1/√n. Taking precision as the reciprocal of that “standard error” then gives a √n dependence.
I agree that methodology is important, but humans can often be good at inferring causality even without randomized controlled trials.
This is true, but we’re also often wrong, and for small-to-medium effects it’s often tough to say when we’re right and when we’re wrong without a technique that severs all possible links between confounders and outcome.
Although the win (expressed as precision of an effect size estimate) from upping the sample size n probably only goes as about √n, I think that’s enough for gwern’s quantitative point to go through. An RCT with a sample size of e.g. 400 would still be 10 times better than 4 self-experiments by this metric. (And this is leaving aside gwern’s point about methodological quality. RCTs punch above their weight because random assignment allows direct causal inference.)
Where is the math for this?
I agree that methodology is important, but humans can often be good at inferring causality even without randomized controlled trials.
Edit: more thoughts on why I don’t think the Bienaymé formula is too relevant here; see also.
http://en.wikipedia.org/wiki/Variance#Sum_of_uncorrelated_variables_.28Bienaym.C3.A9_formula.29
(Of course, any systematic bias stays the same no matter how big you make the sample.)
What steven0461 said. Square rooting both sides of the Bienaymé formula gives the standard deviation of the mean going as 1/√n. Taking precision as the reciprocal of that “standard error” then gives a √n dependence.
This is true, but we’re also often wrong, and for small-to-medium effects it’s often tough to say when we’re right and when we’re wrong without a technique that severs all possible links between confounders and outcome.