There is no “intermittent stochastic collapse process” anywhere in the math of QM. The measurement is a black box with the Born rule to decide the outcome. Bohm is a different story, and not a happy one.
The measurement process in the orthodox interpretation isn’t just a means for determining outcomes. It also has an effect on the subsequent evolution of the wave function. There is a discontinuity in the dynamics before and after a measurement. I don’t see how that wouldn’t count as part of the math of the theory.
True, but there is nothing stochastic about this. Measurement is an external event controlled by an observer. The Born rule and the jump into an eigenstate is the math of it, nothing more, nothing less. The “Von Neumann’s Process 2” is an unnecessary interpretational mumbo-jumbo.
There is no “intermittent stochastic collapse process” anywhere in the math of QM. The measurement is a black box with the Born rule to decide the outcome. Bohm is a different story, and not a happy one.
The measurement process in the orthodox interpretation isn’t just a means for determining outcomes. It also has an effect on the subsequent evolution of the wave function. There is a discontinuity in the dynamics before and after a measurement. I don’t see how that wouldn’t count as part of the math of the theory.
True, but there is nothing stochastic about this. Measurement is an external event controlled by an observer. The Born rule and the jump into an eigenstate is the math of it, nothing more, nothing less. The “Von Neumann’s Process 2” is an unnecessary interpretational mumbo-jumbo.