I doubt it (or at least, doubt that power plants will be a bottleneck as soon as this analysis says). Power generation/use varies widely over the course of a day and of a year (seasons), so the 500 GW number is an average, and generating capacity is overbuilt; this graph on the same EIA page shows generation capacity > 1000 GW and non-stagnant (not counting renewables, it declined slightly from 2005 to 2022 but is still > 800 GW):
This seems to indicate that a lot of additional demand[1] could be handled without building new generation, at least (and maybe not only) if it’s willing to shut down at infrequent times of peak load. (Yes, operators will want to run as much as possible, but would accept some downtime if necessary to operate at all.)
This EIA discussion of cryptocurrency mining (estimated at 0.6% to 2.3% of US electricity consumption!) is highly relevant, and seems to align with the above. (E.g. it shows increased generation at existing power plants with attached crypto mining operations, mentions curtailment during peak demand, and doesn’t mention new plant construction.)
Probably not as much as implied by the capacity numbers, since some of that capacity is peaking plants and/or just old, meaning not only inefficient, but sometimes limited by regulations in how many hours it can operate per year. But still.
I doubt it (or at least, doubt that power plants will be a bottleneck as soon as this analysis says). Power generation/use varies widely over the course of a day and of a year (seasons), so the 500 GW number is an average, and generating capacity is overbuilt; this graph on the same EIA page shows generation capacity > 1000 GW and non-stagnant (not counting renewables, it declined slightly from 2005 to 2022 but is still > 800 GW):
This seems to indicate that a lot of additional demand[1] could be handled without building new generation, at least (and maybe not only) if it’s willing to shut down at infrequent times of peak load. (Yes, operators will want to run as much as possible, but would accept some downtime if necessary to operate at all.)
This EIA discussion of cryptocurrency mining (estimated at 0.6% to 2.3% of US electricity consumption!) is highly relevant, and seems to align with the above. (E.g. it shows increased generation at existing power plants with attached crypto mining operations, mentions curtailment during peak demand, and doesn’t mention new plant construction.)
Probably not as much as implied by the capacity numbers, since some of that capacity is peaking plants and/or just old, meaning not only inefficient, but sometimes limited by regulations in how many hours it can operate per year. But still.