It creates a local area that is higher temperature than it would be without the photosynthesis->chemical energy->fire chain of events. Since energy is conserved there must also be a local area that is lower temperature than it would otherwise be, and I can’t think of a way it would be cooling something hotter than the fire.
It’s a weak example, but the direction of search I have is “Find a process that results in higher local temperatures than would exist without that process”. The other competitor is planet and star formation, which (oversimplified) took a gas cloud very slightly warmer than the cosmic background radiation and concentrated much of it into hotter stars and planets. My engineering thermodynamics education breaks down in astronomical space, because it doesn’t actually enumerate all the assumptions it makes, including “acceleration due to gravity is constant over time”.
Are you excluding things like forest fires?
I don’t think of fire as moving heat around so much as converting chemical energy (derived from electromagnetic) into thermal.
It creates a local area that is higher temperature than it would be without the photosynthesis->chemical energy->fire chain of events. Since energy is conserved there must also be a local area that is lower temperature than it would otherwise be, and I can’t think of a way it would be cooling something hotter than the fire.
It’s a weak example, but the direction of search I have is “Find a process that results in higher local temperatures than would exist without that process”. The other competitor is planet and star formation, which (oversimplified) took a gas cloud very slightly warmer than the cosmic background radiation and concentrated much of it into hotter stars and planets. My engineering thermodynamics education breaks down in astronomical space, because it doesn’t actually enumerate all the assumptions it makes, including “acceleration due to gravity is constant over time”.