The conclusion was that you don’t get interference regardless of what you do at the other end, because the paths are potentially distinguishable.
That’s not quite true. The conclusion was that there actually is interference at the other end, but there are two interference patterns that cancel each other out and make it appear that there is no interference. You can apparently produce interference by bringing (classical) information back form one end of the experiment to the other, but you aren’t really creating it, you are just “filtering out” interference that was already there.
That’s not quite true. The conclusion was that there actually is interference at the other end, but there are two interference patterns that cancel each other out and make it appear that there is no interference. You can apparently produce interference by bringing (classical) information back form one end of the experiment to the other, but you aren’t really creating it, you are just “filtering out” interference that was already there.