There must be something I’m missing here. The previous post pretty definitively proved to me that the no communication clause must be false.
Consider the latter two experiments in the last post:
A transmitted 20°, B transmitted 40°: 5.8%
A transmitted 0°, B transmitted 40°: 20.7%
Lets say I’m on Planet A and my friend is on Planet B, and we are both constantly receiving entangled pairs of photons from some satellite stationed between us. I’m filtering my photons on planet A at 20°, and my friend on planet B is filtering his at 40°. He observes a 5.8% chance that his photons are transmitted, in accordance with the experiment. I want to send him a signal faster than light, so I turn my filter to 0°. He should now observe that his photons have a 20.7% chance of being transmitted.
This takes some statistical analysis before he can determine that the signal has really been sent, but the important part is that it makes the speed of sending the message not dependent on the distance, but on the number of particles sent. Given a sufficient distance and enough particles, it should be faster than light, right?
Those are the probabilities that both halves of a pair of photons are transmitted, so you can’t determine them without the information from both detectors. The distribution at each individual detector doesn’t change, it’s the correlation between them that changes.
Oh. I can imagine a distribution that looks like that. It would have been helpful if he had given us all the numbers. Perhaps he does in this blog post, but I got confused part way through and couldn’t make it to the end.
There must be something I’m missing here. The previous post pretty definitively proved to me that the no communication clause must be false.
Consider the latter two experiments in the last post:
Lets say I’m on Planet A and my friend is on Planet B, and we are both constantly receiving entangled pairs of photons from some satellite stationed between us. I’m filtering my photons on planet A at 20°, and my friend on planet B is filtering his at 40°. He observes a 5.8% chance that his photons are transmitted, in accordance with the experiment. I want to send him a signal faster than light, so I turn my filter to 0°. He should now observe that his photons have a 20.7% chance of being transmitted.
This takes some statistical analysis before he can determine that the signal has really been sent, but the important part is that it makes the speed of sending the message not dependent on the distance, but on the number of particles sent. Given a sufficient distance and enough particles, it should be faster than light, right?
Those are the probabilities that both halves of a pair of photons are transmitted, so you can’t determine them without the information from both detectors. The distribution at each individual detector doesn’t change, it’s the correlation between them that changes.
… And to calculate this correlation one needs to transmit information by classical means, no faster than light.
Oh. I can imagine a distribution that looks like that. It would have been helpful if he had given us all the numbers. Perhaps he does in this blog post, but I got confused part way through and couldn’t make it to the end.
Would it look like this?