“Utility maximisers are scary, and here are some theorems that show that anything sufficiently smart/rational (i.e. a superintelligence) will be a utility maximiser. That’s scary”
I would say “systems that act according to preferences about the state of the world in the distant future are scary”, and then that can hopefully lead to a productive and substantive discussion about whether people are likely to build such systems. (See e.g. here where I argue that someone is being too pessimistic about that, & section 1 here where I argue that someone else is being too optimistic.)
Thanks, I think that’s a good distinction—I guess I have like 3 issues if we roll with that though
I don’t think a system acting according to preferences over future states entails it is EV-maximising w.r.t. some property/resource of those future states. If it’s not doing the latter it seems like it’s not necessarily scary, and if it is then I think we’re back at the issue that we’re making an unjustified leap, this time from “it’s a utility maximizer + it has preferences over future-states” (i.e. having preferences over properties of future states is compatible w/ also having preferences over world-histories/all sorts of weird stuff)
It’s not clear to me that specifying “preferences over future states” actually restricts things much—if I have some preferences over the path I take through lotteries, then whether I take path A or path B to reach outcome X will show up as some difference in the final state, so it feels like we can cast a lot (Most? All?) types of preferences as “preferences over future states”. I think the implicit response here is that we’re categorizing future states by a subset of “interesting-to-us” properties, and the differences in future-states yielded by taking Path A or Path B don’t matter to us (in other words, implicitly whenever we talk about these kinds of preferences over states we’re taking some equivalence class over actual micro-states relative to some subset of properties). But then again I think the issue recurs that a system having preferences over future states w.r.t. this subset of properties is a stronger claim
I’m more and more convinced that, even if a system does have preferences over future-states in the scariest sense here, there’s not really an overriding normative force for it to update towards being a utility-maximiser. But I think this is maybe a kind of orthogonal issue about the force of exploitability arguments rather than coherence theorems here
I think you’ve said something along the lines of one or two of these points in your links, sorry! Not expecting this to be super novel to you, half just helpful for me to get my own thoughts down explicitly
It’s not clear to me that specifying “preferences over future states” actually restricts things much—if I have some preferences over the path I take through lotteries, then whether I take path A or path B to reach outcome X will show up as some difference in the final state, so it feels like we can cast a lot (Most? All?) types of preferences as “preferences over future states”.
In terms of the OP toy model, I think the OP omitted another condition under which the coherence theorem is trivial / doesn’t apply, which is that you always start the MDP in the same place and the MDP graph is a directed tree or directed forest. (i.e., there are no cycles even if you ignore the arrow-heads … I hope I’m getting the graph theory terminology right). In those cases, for any possible end-state, there’s at most one way to get from the start to the end-state; and conversely, for any possible path through the MDP, that’s the path that would result from wanting to get to that end-state. Therefore, you can rationalize any path through the MDP as the optimal way to get to whatever end-state it actually gets to. Right? (cc @johnswentworth@David Lorell )
OK, so what about the real world? The laws of physics are unitary, so it is technically true that if I have some non-distant-future-related preferences (e.g. “I prefer to never tell a lie”, “I prefer to never use my pinky finger”, etc.), this preference can be cast as some inscrutably complicated preference about the state of the world on January 1 2050, assuming omniscient knowledge of the state of the world right now and infinite computational power. For example, “a preference to never use my pinky finger starting right now” might be equivalent to something kinda like “On January 1 2050, IF {air molecule 9834705982347598 has speed between 34.2894583000000 and 34.2894583000001 AND air molecule 8934637823747621 has … [etc. for a googolplex more lines of text]”
This is kind of an irrelevant technicality, I think. The real world MDP in fact is full of (undirected) cycles—i.e. different ways to get to the same endpoint—…as far as anyone can measure it. For example, let’s say that I care about the state of a history ledger on January 1 2050. Then it’s possible for me to do whatever for 25 years … and then hack into the ledger and change it!
However, if the history ledger is completely unbreachable (haha), then I think we should say that this isn’t really a preference about the state of the world in the distant future, but rather an implementation method for making an agent with preferences about trajectories.
In terms of the OP toy model, I think the OP omitted another condition under which the coherence theorem is trivial / doesn’t apply, which is that you always start the MDP in the same place and the MDP graph is a directed tree or directed forest. (i.e., there are no cycles even if you ignore the arrow-heads … I’m hope I’m getting the graph theory terminology right). In those cases, for any possible end-state, there’s at most one way to get from the start to the end-state; and conversely, for any possible path through the MDP, that’s the path that would result from wanting to get to that end-state. Therefore, you can rationalize any path through the MDP as the optimal way to get to whatever end-state it actually gets to. Right?
Technically correct.
I’d emphasize here that this toy theorem is assuming an MDP, which specifically means that the “agent” must be able to observe the entire state at every timestep. If you start thinking about low-level physics and microscopic reversibility, then the entire state is definitely not observable by real agents. In order to properly handle that sort of thing, we’d mostly need to add uncertainty, i.e. shift to POMDPs.
different ways to get to the same endpoint—…as far as anyone can measure it
I would say the territory has no cycles but any map of it does. You can have a butterfly effect where a small nudge is amplified to some measurable difference but you cannot predict the result of that measurement. So the agent’s revealed preferences can only be modeled as a graph where some states are reachable through multiple paths.
I would say “systems that act according to preferences about the state of the world in the distant future are scary”, and then that can hopefully lead to a productive and substantive discussion about whether people are likely to build such systems. (See e.g. here where I argue that someone is being too pessimistic about that, & section 1 here where I argue that someone else is being too optimistic.)
Thanks, I think that’s a good distinction—I guess I have like 3 issues if we roll with that though
I don’t think a system acting according to preferences over future states entails it is EV-maximising w.r.t. some property/resource of those future states. If it’s not doing the latter it seems like it’s not necessarily scary, and if it is then I think we’re back at the issue that we’re making an unjustified leap, this time from “it’s a utility maximizer + it has preferences over future-states” (i.e. having preferences over properties of future states is compatible w/ also having preferences over world-histories/all sorts of weird stuff)
It’s not clear to me that specifying “preferences over future states” actually restricts things much—if I have some preferences over the path I take through lotteries, then whether I take path A or path B to reach outcome X will show up as some difference in the final state, so it feels like we can cast a lot (Most? All?) types of preferences as “preferences over future states”. I think the implicit response here is that we’re categorizing future states by a subset of “interesting-to-us” properties, and the differences in future-states yielded by taking Path A or Path B don’t matter to us (in other words, implicitly whenever we talk about these kinds of preferences over states we’re taking some equivalence class over actual micro-states relative to some subset of properties). But then again I think the issue recurs that a system having preferences over future states w.r.t. this subset of properties is a stronger claim
I’m more and more convinced that, even if a system does have preferences over future-states in the scariest sense here, there’s not really an overriding normative force for it to update towards being a utility-maximiser. But I think this is maybe a kind of orthogonal issue about the force of exploitability arguments rather than coherence theorems here
I think you’ve said something along the lines of one or two of these points in your links, sorry! Not expecting this to be super novel to you, half just helpful for me to get my own thoughts down explicitly
In terms of the OP toy model, I think the OP omitted another condition under which the coherence theorem is trivial / doesn’t apply, which is that you always start the MDP in the same place and the MDP graph is a directed tree or directed forest. (i.e., there are no cycles even if you ignore the arrow-heads … I hope I’m getting the graph theory terminology right). In those cases, for any possible end-state, there’s at most one way to get from the start to the end-state; and conversely, for any possible path through the MDP, that’s the path that would result from wanting to get to that end-state. Therefore, you can rationalize any path through the MDP as the optimal way to get to whatever end-state it actually gets to. Right? (cc @johnswentworth @David Lorell )
OK, so what about the real world? The laws of physics are unitary, so it is technically true that if I have some non-distant-future-related preferences (e.g. “I prefer to never tell a lie”, “I prefer to never use my pinky finger”, etc.), this preference can be cast as some inscrutably complicated preference about the state of the world on January 1 2050, assuming omniscient knowledge of the state of the world right now and infinite computational power. For example, “a preference to never use my pinky finger starting right now” might be equivalent to something kinda like “On January 1 2050, IF {air molecule 9834705982347598 has speed between 34.2894583000000 and 34.2894583000001 AND air molecule 8934637823747621 has … [etc. for a googolplex more lines of text]”
This is kind of an irrelevant technicality, I think. The real world MDP in fact is full of (undirected) cycles—i.e. different ways to get to the same endpoint—…as far as anyone can measure it. For example, let’s say that I care about the state of a history ledger on January 1 2050. Then it’s possible for me to do whatever for 25 years … and then hack into the ledger and change it!
However, if the history ledger is completely unbreachable (haha), then I think we should say that this isn’t really a preference about the state of the world in the distant future, but rather an implementation method for making an agent with preferences about trajectories.
Technically correct.
I’d emphasize here that this toy theorem is assuming an MDP, which specifically means that the “agent” must be able to observe the entire state at every timestep. If you start thinking about low-level physics and microscopic reversibility, then the entire state is definitely not observable by real agents. In order to properly handle that sort of thing, we’d mostly need to add uncertainty, i.e. shift to POMDPs.
I would say the territory has no cycles but any map of it does. You can have a butterfly effect where a small nudge is amplified to some measurable difference but you cannot predict the result of that measurement. So the agent’s revealed preferences can only be modeled as a graph where some states are reachable through multiple paths.